消息队列基础补充
消息队列基础概念

消息队列基础概念

消息队列提供的功能

  • 异步处理
  • 流量控制
  • 消息解耦

队列和主题的区别

最初的消息队列,就是一个严格意义上的队列。在计算机领域,“队列(Queue)”是一种数据结构,有完整而严格的定义。在维基百科中,队列的定义是这样的:

队列是先进先出(FIFO, First-In-First-Out)的线性表(Linear List)。在具体应用中通常用链表或者数组来实现。队列只允许在后端(称为 rear)进行插入操作,在前端(称为 front)进行删除操作。

**早期的消息队列,就是按照“队列”的数据结构来设计的。**我们一起看下这个图,生产者(Producer)发消息就是入队操作,消费者(Consumer)收消息就是出队也就是删除操作,服务端存放消息的容器自然就称为“队列”。

这就是最初的一种消息模型:队列模型。
queue.jpeg

如果需要将一份消息数据分发给多个消费者,要求每个消费者都能收到全量的消息,例如,对于一份订单数据,风控系统、分析系统、支付系统等都需要接收消息。这个时候,单个队列就满足不了需求,一个可行的解决方式是,为每个消费者创建一个单独的队列,让生产者发送多份。

为了解决这个问题,演化出了另外一种消息模型:“发布 - 订阅模型(Publish-Subscribe Pattern)”。

queue2.jpeg

在发布 - 订阅模型中,消息的发送方称为发布者(Publisher),消息的接收方称为订阅者(Subscriber),服务端存放消息的容器称为主题(Topic)。发布者将消息发送到主题中,订阅者在接收消息之前需要先“订阅主题”。“订阅”在这里既是一个动作,同时还可以认为是主题在消费时的一个逻辑副本,每份订阅中,订阅者都可以接收到主题的所有消息。

保障消息队列不丢失

其实,现在主流的消息队列产品都提供了非常完善的消息可靠性保证机制,完全可以做到在消息传递过程中,即使发生网络中断或者硬件故障,也能确保消息的可靠传递,不丢消息。

绝大部分丢消息的原因都是由于开发者不熟悉消息队列,没有正确使用和配置消息队列导致的。虽然不同的消息队列提供的 API 不一样,相关的配置项也不同,但是在保证消息可靠传递这块儿,它们的实现原理是一样的。

检测消息丢失的方法
  • 分布式链路跟踪系统
  • 根据生产者标示+分区号+递增消息号判断
  • 生产者保存需要核对是否丢失的数据,消费者消费完之后需要与生产者核对数据

像 Kafka 和 RocketMQ 这样的消息队列,它是不保证在 Topic 上的严格顺序的,只能保证分区上的消息是有序的,所以我们在发消息的时候必须要指定分区,并且,在每个分区单独检测消息序号的连续性。

如果你的系统中 Producer 是多实例的,由于并不好协调多个 Producer 之间的发送顺序,所以也需要每个 Producer 分别生成各自的消息序号,并且需要附加上 Producer 的标识,在 Consumer 端按照每个 Producer 分别来检测序号的连续性。

Consumer 实例的数量最好和分区数量一致,做到 Consumer 和分区一一对应,这样会比较方便地在 Consumer 内检测消息序号的连续性。

如何确保消息不丢失

一条消息从生产到消费完成这个过程,可以划分三个阶段:

queue1.jpeg
  1. 生产阶段

    在生产阶段,消息队列通过最常用的请求确认机制,来保证消息的可靠传递:当你的代码调用发消息方法时,消息队列的客户端会把消息发送到 Broker,Broker 收到消息后,会给客户端返回一个确认响应,表明消息已经收到了。客户端收到响应后,完成了一次正常消息的发送。

    只要 Producer 收到了 Broker 的确认响应,就可以保证消息在生产阶段不会丢失。有些消息队列在长时间没收到发送确认响应后,会自动重试,如果重试再失败,就会以返回值或者异常的方式告知用户。

    你在编写发送消息代码时,需要注意,正确处理返回值或者捕获异常,就可以保证这个阶段的消息不会丢失。

  2. 存储阶段

    在存储阶段正常情况下,只要 Broker 在正常运行,就不会出现丢失消息的问题,但是如果 Broker 出现了故障,比如进程死掉了或者服务器宕机了,还是可能会丢失消息的。

    如果对消息的可靠性要求非常高,可以通过配置 Broker 参数来避免因为宕机丢消息。

    对于单个节点的 Broker,需要配置 Broker 参数,在收到消息后,将消息写入磁盘后再给 Producer 返回确认响应,这样即使发生宕机,由于消息已经被写入磁盘,就不会丢失消息,恢复后还可以继续消费。例如,在 RocketMQ 中,需要将刷盘方式 flushDiskType 配置为 SYNC_FLUSH 同步刷盘。

    如果是 Broker 是由多个节点组成的集群,需要将 Broker 集群配置成:至少将消息发送到 2 个以上的节点,再给客户端回复发送确认响应。这样当某个 Broker 宕机时,其他的 Broker 可以替代宕机的 Broker,也不会发生消息丢失。

  3. 消费阶段

    消费阶段采用和生产阶段类似的确认机制来保证消息的可靠传递,客户端从 Broker 拉取消息后,执行用户的消费业务逻辑,成功后,才会给 Broker 发送消费确认响应。如果 Broker 没有收到消费确认响应,下次拉消息的时候还会返回同一条消息,确保消息不会在网络传输过程中丢失,也不会因为客户端在执行消费逻辑中出错导致丢失。

    你在编写消费代码时需要注意的是,不要在收到消息后就立即发送消费确认,而是应该在执行完所有消费业务逻辑之后,再发送消费确认。

对于kafka的相关使用可以参考之前的一篇文章【消息队列(一)-如何解决消息丢失】

解决消息重复问题

消息重复的情况必然存在

在 MQTT 协议中,给出了三种传递消息时能够提供的服务质量标准,这三种服务质量从低到高依次是:

  • At most once: 至多一次。消息在传递时,最多会被送达一次。换一个说法就是,没什么消息可靠性保证,允许丢消息。一般都是一些对消息可靠性要求不太高的监控场景使用,比如每分钟上报一次机房温度数据,可以接受数据少量丢失。
  • At least once: 至少一次。消息在传递时,至少会被送达一次。也就是说,不允许丢消息,但是允许有少量重复消息出现。
  • Exactly once:恰好一次。消息在传递时,只会被送达一次,不允许丢失也不允许重复,这个是最高的等级。

这个服务质量标准不仅适用于 MQTT,对所有的消息队列都是适用的。我们现在常用的绝大部分消息队列提供的服务质量都是 At least once,包括 RocketMQ、RabbitMQ 和 Kafka 都是这样。也就是说,消息队列很难保证消息不重复。

利用幂等性解决重复消息问题
  1. 利用数据库的唯一约束实现幂等

    不光是可以使用关系型数据库,只要是支持类似“INSERT IF NOT EXIST”语义的存储类系统都可以用于实现幂等,比如,你可以用 Redis 的 SETNX 命令来替代数据库中的唯一约束,来实现幂等消费。

  2. 为更新的数据设置前置条件

    另外一种实现幂等的思路是,给数据变更设置一个前置条件,如果满足条件就更新数据,否则拒绝更新数据,在更新数据的时候,同时变更前置条件中需要判断的数据。这样,重复执行这个操作时,由于第一次更新数据的时候已经变更了前置条件中需要判断的数据,不满足前置条件,则不会重复执行更新数据操作。
    但是,如果我们要更新的数据不是数值,或者我们要做一个比较复杂的更新操作怎么办?用什么作为前置判断条件呢?更加通用的方法是,给你的数据增加一个版本号属性,每次更数据前,比较当前数据的版本号是否和消息中的版本号一致,如果不一致就拒绝更新数据,更新数据的同时将版本号 +1,一样可以实现幂等更新。

  3. 记录并检查操作
    如果上面提到的两种实现幂等方法都不能适用于你的场景,还有一种通用性最强,适用范围最广的实现幂等性方法:记录并检查操作,也称为“Token 机制或者 GUID(全局唯一 ID)机制”,实现的思路特别简单:在执行数据更新操作之前,先检查一下是否执行过这个更新操作。

具体的实现方法是,在发送消息时,给每条消息指定一个全局唯一的 ID,消费时,先根据这个 ID 检查这条消息是否有被消费过,如果没有消费过,才更新数据,然后将消费状态置为已消费。

原理和实现是不是很简单?其实一点儿都不简单,在分布式系统中,这个方法其实是非常难实现的,在“检查消费状态,然后更新数据并且设置消费状态”中,三个操作必须作为一组操作保证原子性,才能真正实现幂等,否则就会出现 Bug。

对于这个问题,当然我们可以用事务来实现,也可以用锁来实现,但是在分布式系统中,无论是分布式事务还是分布式锁都是比较难解决问题。

对于kafka的相关使用可以参考之前的一篇文章【消息队列(二)-消息幂等】

处理消息积压

优化消息收发性能,预防消息积压的方法有两种,增加批量或者是增加并发,在发送端这两种方法都可以使用,在消费端需要注意的是,增加并发需要同步扩容分区数量,否则是起不到效果的。

对于系统发生消息积压的情况,需要先解决积压,再分析原因,毕竟保证系统的可用性是首先要解决的问题。快速解决积压的方法就是通过水平扩容增加 Consumer 的实例数量。

高并发系统-数据库关键点梳理
奇怪的知识又增加了- BLNJ导致索引有序性失效

奇怪的知识又增加了- BLNJ导致索引有序性失效

先来看表结构:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
CREATE TABLE a (
`id`bigint AUTO_INCREMENT ,
`a` int,
`b` int,
PRIMARY KEY (`id`),
KEY `idx_a_b` (`a`,`b`)
);

CREATE TABLE b (
`id`bigint AUTO_INCREMENT ,
`b` int,
`c` int,
PRIMARY KEY (`id`)
)

看一下join语句,因为b上没有索引,所以mysql用的BLNJ:

1
2
3
4
explain select * from a 
join b using(b)
where a = 1
order by a, b;
id select_type table partitions type possible_keys key key_len ref rows filtered extra
1 SIMPLE a null ref idx_a_b idx_a_b 4 const 5206 100.00 Using temporary; Using filesort
1 SIMPLE b null ALL null null null Null 1000 100.00 Using where; Using join buffer (Block Nested Loop)

如果b表有索引的话:

1
2
3
4
5
6
7
CREATE TABLE b (
`id`bigint AUTO_INCREMENT ,
`b` int,
`c` int,
PRIMARY KEY (`id`),
KEY `idx_b` (`b`)
)
id select_type table partitions type possible_keys key key_len ref rows filtered extra
1 SIMPLE a null ref idx_a_b idx_a_b 8 Const 5206 100.00 Using index condition
1 SIMPLE b null Ref idx_b Idx_b 4 b.b 50 100.00 null

可以发现a表idx_a_b有序性没有利用上,至于原因,先看一下BNLJ执行的流程图:

BNLJ.jpeg

执行过程为:

  1. 扫描表 t1,顺序读取数据行放入 join_buffer 中,直到 join_buffer 满了,继续第 2 步;
  2. 扫描表 t2,把 t2 中的每一行取出来,跟 join_buffer 中的数据做对比,满足 join 条件的,作为结果集的一部分返回;
  3. 清空 join_buffer;
  4. 继续扫描表 t1,顺序读取之后数据放入 join_buffer 中,继续执行第 2 步,直到所有数据读取完毕。

其中隐含的问题在于第二步:即使t1表的数据是有序读取到join_buffer中的,由于是先扫描t2表再关联join_buffer数据,导致join_buffer中的有序性失效。

如果表b有索引idx_b,那么使用BKA算法第二步的关联顺序与BNLJ相反,是先扫描join_buffer后通过索引关联t2,则可以利用join_buffer中的有序数据。

为什么引入间隙锁

为什么引入间隙锁

为了便于说明问题,我们先使用一个小一点儿的表,建表和初始化语句如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CREATE TABLE `t` (
`id` int(11) NOT NULL,
`c` int(11) DEFAULT NULL,
`d` int(11) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `c` (`c`)
) ENGINE=InnoDB;

insert into t values
(0,0,0),
(5,5,5),
(10,10,10),
(15,15,15),
(20,20,20),
(25,25,25);

这个表除了主键 id 外,还有一个索引 c,初始化语句在表中插入了 6 行数据。

下面的语句序列,是怎么加锁的,加的锁又是什么时候释放的呢?

1
select * from t where d = 5 for update;

比较好理解的是,这个语句会命中 d = 5 的这一行,对应的主键 id = 5,因此在 select 语句执行完成后,会在id = 5 这一行主键上加一个写锁,而且由于两阶段锁协议,这个写锁会在执行 commit 语句的时候释放。

由于字段 d 上没有索引,因此这条查询语句会做全表扫描。那么,其他被扫描到的,但是不满足条件的 5 行记录上,会不会被加锁呢?

我们知道,InnoDB 的默认事务隔离级别是可重复读,所以本文接下来没有特殊说明的部分,都是设定在可重复读隔离级别下。

幻读是什么?

现在,我们就来分析一下,假设只在 id = 5 这一行加锁,而其他行的不加锁的话,会怎么样。

下面先来看一下这个场景(这个结果是建立在前面假设之上,实际上是错误的):

img

假设只在 id = 5 这一行加行锁,可以看到,session A 里执行了三次查询,分别是 Q1、Q2 和 Q3。它们的 SQL 语句相同,都是 select * fom t where d=5 for update。我们来看一下这三条 SQL 语句,分别会返回什么结果。

  1. Q1 只返回 id = 5 这一行;
  2. 在 T2 时刻,session B 把 id = 0 这一行的 d 值改成了 5,因此 T3 时刻 Q2 查出来的是 id = 0 id = 5 这两行;
  3. 在 T4 时刻,session C 又插入一行(1,1,5),因此 T5 时刻 Q3 查出来的是 id = 0id = 1id = 5 的这三行。

其中,Q3 读到 id = 1 这一行的现象,被称为“幻读”。也就是说,幻读指的是一个事务在前后两次查询同一个范围的时候,后一次查询看到了前一次查询没有看到的行。

这里,我需要对“幻读”做一个说明:

  1. 在可重复读隔离级别下,普通的查询是快照读,是不会看到别的事务插入的数据的。因此,幻读在当前读下才会出现。
  2. 上面 session B 的修改结果,被 session A 之后的 select 语句用当前读看到,不能称为幻读。幻读仅专指新插入的行。

如果只从我们学到的事务可见性规则来分析的话,上面这三条 SQL 语句的返回结果都没有问题。

因为这三个查询都是加了 for update,都是当前读。而当前读的规则,就是要能读到所有已经提交的记录的最新值。并且,session B 和 sessionC 的两条语句,执行后就会提交,所以 Q2 和 Q3 就是应该看到这两个事务的操作效果,而且也看到了,这跟事务的可见性规则并不矛盾。

幻读有什么问题?

**首先是语义上的。**session A 在 T1 时刻就声明了,“我要把所有 d=5 的行锁住,不准别的事务进行读写操作”。所以我们假设只锁了id = 5这一行的语义与select * from t where d = 5 for update 不同。

其次,是数据一致性的问题。 **这个数据不一致到底是怎么引入的?**肯定是前面的假设有问题。

我们把扫描过程中碰到的行,也都加上写锁,再来看看执行效果。

img

由于 session A 把所有的行都加了写锁,所以 session B 在执行第一个 update 语句的时候就被锁住了。需要等到 T6 时刻 session A 提交以后,session B 才能继续执行。

这样对于 id = 0 这一行,在数据库里的最终结果还是 (0,5,5)。在 binlog 里面,执行序列是这样的:

1
2
3
4
5
6
7
insert into t values(1,1,5); /*(1,1,5)*/
update t set c=5 where id=1; /*(1,5,5)*/

update t set d=100 where d=5;/* 所有 d=5 的行,d 改成 100*/

update t set d=5 where id=0; /*(0,0,5)*/
update t set c=5 where id=0; /*(0,5,5)*/

可以看到,按照日志顺序执行,id = 0 这一行的最终结果也是 (0,5,5)。所以,id = 0 这一行的问题解决了。

但同时你也可以看到,id = 1 这一行,在数据库里面的结果是 (1,5,5),而根据 binlog 的执行结果是 (1,5,100),也就是说幻读的问题还是没有解决。为什么我们已经这么“凶残”地,把所有的记录都上了锁,还是阻止不了 id = 1 这一行的插入和更新呢?

原因很简单。在 T3 时刻,我们给所有行加锁的时候,id = 1 这一行还不存在,不存在也就加不上锁。

**也就是说,即使把所有的记录都加上锁,还是阻止不了新插入的记录,**这也是为什么“幻读”会被单独拿出来解决的原因。

如何解决幻读?

现在你知道了,产生幻读的原因是,行锁只能锁住行,但是新插入记录这个动作,要更新的是记录之间的“间隙”。因此,为了解决幻读问题,InnoDB 只好引入新的锁,也就是间隙锁 (Gap Lock)。

顾名思义,间隙锁,锁的就是两个值之间的空隙。比如文章开头的表 t,初始化插入了 6 个记录,这就产生了 7 个间隙。

img

这样,当你执行 select * from t where d=5 for update 的时候,就不止是给数据库中已有的 6 个记录加上了行锁,还同时加了 7 个间隙锁。这样就确保了无法再插入新的记录。

也就是说这时候,在一行行扫描的过程中,不仅将给行加上了行锁,还给行两边的空隙,也加上了间隙锁。

现在你知道了,数据行是可以加上锁的实体,数据行之间的间隙,也是可以加上锁的实体。但是间隙锁跟我们之前碰到过的锁都不太一样。

比如行锁,分成读锁和写锁。下图就是这两种类型行锁的冲突关系。

img

也就是说,跟行锁有冲突关系的是“另外一个行锁”。

但是间隙锁不一样,**跟间隙锁存在冲突关系的,是“往这个间隙中插入一个记录”这个操作。**间隙锁之间都不存在冲突关系。

这句话不太好理解,我给你举个例子:

img

这里 session B 并不会被堵住。因为表 t 里并没有 c = 7 这个记录,因此 session A 加的是间隙锁 (5,10)。而 session B 也是在这个间隙加的间隙锁。它们有共同的目标,即:保护这个间隙,不允许插入值。但,它们之间是不冲突的。

间隙锁和行锁合称 next-key lock,每个 next-key lock 是前开后闭区间。也就是说,我们的表 t 初始化以后,如果用 select * from t for update 要把整个表所有记录锁起来,就形成了 7 个 next-key lock,分别是 (-∞,0]、(0,5]、(5,10]、(10,15]、(15,20]、(20, 25]、(25, +supremum]。

备注:这篇文章中,如果没有特别说明,我们把间隙锁记为开区间,把 next-key lock 记为前开后闭区间。

你可能会问说,这个 supremum 从哪儿来的呢?

这是因为 +∞是开区间。实现上,InnoDB 给每个索引加了一个不存在的最大值 supremum,这样才符合我们前面说的“都是前开后闭区间”。

间隙锁和 next-key lock 的引入,帮我们解决了幻读的问题,但同时也带来了一些“困扰”。

对应到我们这个例子的表来说,业务逻辑这样的:任意锁住一行,如果这一行不存在的话就插入,如果存在这一行就更新它的数据,代码如下:

1
2
3
4
5
6
7
8
9
begin;
select * from t where id=N for update;

/* 如果行不存在 */
insert into t values(N,N,N);
/* 如果行存在 */
update t set d=N set id=N;

commit;

这个逻辑一旦有并发,就会碰到死锁。你一定也觉得奇怪,这个逻辑每次操作前用 for update 锁起来,已经是最严格的模式了,怎么还会有死锁呢?

这里,我用两个 session 来模拟并发,并假设 N=9。

img

图 8 间隙锁导致的死锁

你看到了,其实都不需要用到后面的 update 语句,就已经形成死锁了。我们按语句执行顺序来分析一下:

  1. session A 执行 select … for update 语句,由于 id = 9 这一行并不存在,因此会加上间隙锁 (5,10);
  2. session B 执行 select … for update 语句,同样会加上间隙锁 (5,10),间隙锁之间不会冲突,因此这个语句可以执行成功;
  3. session B 试图插入一行 (9,9,9),被 session A 的间隙锁挡住了,只好进入等待;
  4. session A 试图插入一行 (9,9,9),被 session B 的间隙锁挡住了。

至此,两个 session 进入互相等待状态,形成死锁。当然,InnoDB 的死锁检测马上就发现了这对死锁关系,让 session A 的 insert 语句报错返回了。

你现在知道了,间隙锁的引入,可能会导致同样的语句锁住更大的范围,这其实是影响了并发度的

你可能会说,为了解决幻读的问题,我们引入了这么一大串内容,有没有更简单一点的处理方法呢。

我在文章一开始就说过,如果没有特别说明,今天和你分析的问题都是在可重复读隔离级别下的,间隙锁是在可重复读隔离级别下才会生效的。所以,你如果把隔离级别设置为读提交的话,就没有间隙锁了。但同时,你要解决可能出现的数据和日志不一致问题,需要把 binlog 格式设置为 row。这,也是现在不少公司使用的配置组合。

高性能MySql 4至6章读书笔记

高性能MySql 4至6章读书笔记

第四章 Schema设计

选择优化的数据类型

更小的通常更好,但是要确保没有低估需要存储的值的范围,因为在schema中的多个地方增加数据类型范围是一个十分耗时的操作。

简单就好

简单的数据类型的操作通常需要更少的cpu时间。

尽量避免NULL

可为NULL的列使得索引、索引比统计和值比较都更为复杂。

当然也有例外,InnoDB使用单独的位存储NULL值, 所以对于稀疏数据有很好的空间效率。

选择标识符

一旦选定一种类型,要确保在所有的关联表中都使用同样的类型。类型之间需要精确匹配,包括像UNSIGNED这样的属性。尽量只用整型定义标识符。

注意可变长字符串

其在临时表和排序时可能导致悲观的按最大长度分配内存

范式与反范式

范式是好的,但是反范式有时也是必须的,并且能带来好处。

第五章 创建高性能索引

B-Tree 索引的查询类型
  • 全值匹配: 指的是和索引的所有列进行匹配
  • 匹配最左前缀: 查找索引前几列进行匹配
  • 匹配列前缀: 只匹配某一列的值的开头部分
  • 匹配范围值: 查找索引某一范围的值
  • 精确匹配某一列并范围匹配另外一列
  • 只访问索引的查询:覆盖索引
B-Tree 索引的限制
  • 如果不是按照索引的最左列开始查找,则无法使用索引

  • 不能跳过索引中的列

  • 如果查询中有某个列的范围查询,则其右边的所有列都无法使用索引:

    例如查询 索引为key(last_name, fisrt_name, dob)

    1
    where last_name = 'a' and first_name like 'J%' and dob = '1877-12-23'
索引的优点
  1. 大大减少服务器需要扫描的数据量
  2. 帮助服务器避免排序和临时表
  3. 将随机I/O变为顺序I/O
高性能索引-独立的列

如果查询中列不是独立的,则mysql不会使用索引

1
2
select actor_id from sakila.actor where actor_id + 1 = 5;

高性能索引-前缀索引和索引选择性

有时候需要索引很长的字符列,通常可以索引开始部分的字符,同时也会降低索引的选择性。

索引的选择性指的是,不重复的索引值和数据表的记录总数的比值。索引的选择性越高表示查询效率越高,因为选择性高的索引可以过滤掉更多的行。

前缀索引是一种能使索引更小,更快的有效方法,但是也有其缺点:前缀索引无法做order by 和 group by,也无法使用前缀索引做覆盖索引。

高性能索引-多列索引

最容易遇到的困惑是多列索引的顺序,正确的顺序依赖于使用索引的查询,同时需要考虑如何更好的满足排序和分组需要。对于如何选择索引的列顺序有一个经验法则:将选择性最高的列放在索引的最前列。只有不需要考虑排序和分组时,将选择性跟高的列放在最前面通常是最好的,但是考虑问题需要更全面,避免随机I/O和排序更加重要。

高性能索引-覆盖索引

如果一个索引包含所需要查询的字段的值,我们就可以称之为“覆盖索引”

覆盖索引的好处:

  • 索引条目通常远小于数据行大小,所以如果只需要读取索引,那mysql就会极大的减少数据访问量。
  • 因为索引是按照列值顺序存储的,所以对于I/O密集型范围查询回避随机从磁盘读取每一行数据的I/O要小的多
  • 由于Innodb的聚簇索引,覆盖索引对Innodb表特别有用,可以避免对主键索引的二次查询。

覆盖索引的陷阱:

1
select * from products where actor = 'SEAN CARREY' and title like '%APOLLO%';

  • 没有索引能够覆盖这个查询,因为查询从表中选择了所有的列
  • mysql不能再索引中执行like操作,只能做最左前缀匹配

高性能索引-使用索引扫描来做排序

mysql有两种方式可以生成有序的结果:通过排序操作;或者使用索引顺序扫描。mysql可以使用同一个索引既满足排序,有用于查找行。

只有当索引的列顺序和ORDER BY子句的顺序完全一致,并且所有列的排序方向都一样时,mysql才能使用索引来对结果做排序。如果查询需要关联多张表,则只有当ORDER BY子句引用的字段全部为第一个表时,才能用索引做排序。ORDER BY子句和查询的限制是一样的:需要满足索引的最左前缀的要求。

有一种情况下ORDER BY子句可以不满足索引的最左前缀要求:

1
2
select rental_id, staff_id from sakila.rental where rental_date = '2005-05-25'
order by inventory_id, customer_id;

索引为key(rental_date, inventory_id, customer_id),前导列为常量的时候,如果where子句或者join子句中对这些列指定了常量,就可以弥补ORDER BY的不足。

1
2
where rental_date > '2005-12-25' order by inventory_id, customer_id;
where rental_date = '2005-12-25' and inventory_id in (1, 2) order by cusomter_id;

对于索引上是范围查询,mysql无法使用之后的索引列

高性能索引-使用索引扫描减少锁

索引可以让查询锁定更少的行,如果你的查询从不访问那些不需要的行,那么就会锁定更少的行。但这只有当innoDB在存储引擎层能够过滤掉所有不需要的行是才有效。如果索引无法过滤掉无效的行,那么innoDB检索到数据并返回给服务器层后,innoDB已经锁定这些行了(mysql 5.6后没有这个问题)。

高性能索引-避免多个范围条件

下面的查询:

1
where last_online > date_sub(now(), interval 7 day) and age bwtween 18 and 25

这个查询有一个问题:它有两个范围条件,last_online和age列,mysql可以使用last_online的索引或者是age列的索引,但是无法同时使用它们。

高性能索引-延迟关联优化分页

如果一个查询匹配结果有上百万行的话会怎样?

1
select * from profiles where sex = 'm' order by rating limit 10;

即使有索引,如果用户界面需要翻页,并且翻页到比较靠后的地方也会非常慢,如:

1
select * from profiles where sex = 'm' order by rating limit 1000000, 10;

无论如何创建索引,这种查询都是个严重的问题,mysql需要花费大量时间来扫描需要丢弃的数据。其中一个解决的办法是限制能够翻页的数量。

优化这类索引的另一个比较好的策略是使用延迟关联,通过使用覆盖索引返回需要的主建,再根据这些主建回主表获得需要的行,这样可以减少mysql扫描需要丢弃的行数。

1
2
3
4
5
6
select * from profiles innner join 
(
select id fomr profiles p where p.sex = 'm' order by rating limit 1000000, 10

) as t using (id);

第六章 慢查询优化

优化数据访问

查询性能低下最基本的原因是访问数据太多。某些查询可能不可避免的需要筛选大量数据,单这并不常见。大部分性能低下的查询都可以通过减少访问的数据量的方式进行优化。对于低效的查询,我们发现通过下面几个步骤来分析总是很有效:

  1. 确认应用程序时候检索大量超过需要的数据。
  2. 确认mysql服务层是否在分许大量超过需要的数据行。

第一种情况可以使用limit和选择需要的列来解决。在确定查询只返回需要的数据之后,接下来应该看看查询为了返回结果是否扫描了过多的数据,对于mysql有三个衡量查询开销的指标:

  • 响应时间
  • 扫描的行数
  • 返回的行数

没有那个指标能完美地衡量查询的开销,但它们大致反映了mysql内部查询时需要访问多少数据,并可以大概推算出查询运行的时间。

在评估查询开销的时候,需要考虑一下从表中找到某一行数据的成本。mysql有好几种访问方式可以查找并返回一行结果。有些访问方式可能需要扫描很多行才能返回一行结果,也有些访问方式可能无需扫描就能返回结果。

在explain语句中的type列反应了访问类型。访问类型有很多种,从全表扫描到索引扫描、范围扫描、唯一索引查询、常数引用等。这里列的这些,速度是从慢到快,扫描行数也是从大到小。如果查询没有办法找到合适是访问类型,那么解决的最好办法通常是增加一个合适的索引。

一般mysql能够使用如下三种方式应用where条件,从好到坏依次为:

  • 从索引中使用where条件吗来过滤不匹配的记录,这是在存储引擎层完成的。
  • 使用索引覆盖扫描来返回记录(extra出现using index),直接从索引中过滤不需要的数据并返回命中结果。这是在mysql服务层完成的,但无需再回表查询记录。
  • 从数据表中返回数据,然后过滤不满足条件的记录(extra出现using where)。这是在mysql服务器层完成,mysql需要从数据表中读出记录然后过滤。

如果发现查询需要扫描大量的数据但只返回少数的行,那么可以使用下面的技巧去优化它:

  • 使用覆盖索引,把需要用的列都放到索引中
  • 改变库表结构。例如使用单独的汇总表
  • 重写复杂的查询, 让mysql优化器能够以更加高效的方式执行这个查询

重构查询方式-切分查询

有时候对于一个大查询我们需要分而治之,将大查询分成小查询。删除旧数据是一个很好的例子,如果用一个大的语句一次性完成,则可能一次需要锁住很多数据、占满整个事务日志、耗尽系统资源、阻塞恨到重要的查询。

重构查询方式-分解关联查询

例如下面这个查询:

1
2
3
4
select * from tag
join tag_post on tag_post.tag_id = tag.id
join post on tag_post.post_id = post.id
where tag.tag = 'mysql';

可以分解成下面这个查询来代替:

1
2
3
4
5
select * from tag where tag = 'mysql';

select * from tag_post where tag_id = 1234;

select * from post where post.id in (123,456,567);

用分解关联查询的方式重构查询有如下的优势:

  • 让缓存效率更高。许多应用程序可以方便地缓存单表查询对应的结果对象。
  • 将查询分解后,执行单个查询可以减少锁的竞争。
  • 在应用层做关联,可以更容易对数据库进行拆分,更容易做到高性能和高扩展。
  • 查询本身效率可能提升,使用in代替关联查询,可能比随机关联更高效。
  • 减少冗余记录的查询
  • 相当于在应用层实现了哈希关联

重构查询方式-优化关联查询

  • 确保on或者using子句上的列上有索引。
  • 确保任何group by和 order by 的表达式中只涉及到一个表中的列,这样mysql才有可能使用索引来优化这个过程
消息队列(二)-消息幂等

消息队列(二)-消息幂等

什么是幂等

幂等是一个数学上的概念,它的含义是多次执行同一个操作和执行一次操作,最终得到的结果是相同的。

如果我们消费一条消息的时候,要给现有的库存数量减 1,那么如果消费两条相同的消息就会给库存数量减 2,这就不是幂等的。而如果消费一条消息后,处理逻辑是将库存的数量设置为 0,或者是如果当前库存数量是 10 时则减 1,这样在消费多条消息时,所得到的结果就是相同的,这就是幂等的。

**说白了,你可以这么理解“幂等”:**一件事儿无论做多少次都和做一次产生的结果是一样的,那么这件事儿就具有幂等性。

在生产、消费过程中增加消息幂等性的保证

消息在生产和消费的过程中都可能会产生重复,所以你要做的是,在生产过程和消费过程中增加消息幂等性的保证,这样就可以认为从最终结果上来看,消息实际上是只被消费了一次的。

**在消息生产过程中,**在 Kafka0.11 版本和 Pulsar 中都支持“producer idempotency”的特性,翻译过来就是生产过程的幂等性,这种特性保证消息虽然可能在生产端产生重复,但是最终在消息队列存储时只会存储一份。

它的做法是给每一个生产者一个唯一的 ID,并且为生产的每一条消息赋予一个唯一 ID,消息队列的服务端会存储 < 生产者 ID,最后一条消息 ID> 的映射。当某一个生产者产生新的消息时,消息队列服务端会比对消息 ID 是否与存储的最后一条 ID 一致,如果一致,就认为是重复的消息,服务端会自动丢弃。

loss4.jpg

而在消费端,幂等性的保证会稍微复杂一些,你可以从通用层和业务层两个层面来考虑。

在通用层面,你可以在消息被生产的时候,使用发号器给它生成一个全局唯一的消息 ID,消息被处理之后,把这个 ID 存储在数据库中,在处理下一条消息之前,先从数据库里面查询这个全局 ID 是否被消费过,如果被消费过就放弃消费。

你可以看到,无论是生产端的幂等性保证方式,还是消费端通用的幂等性保证方式,它们的共同特点都是为每一个消息生成一个唯一的 ID,然后在使用这个消息的时候,先比对这个 ID 是否已经存在,如果存在,则认为消息已经被使用过。所以这种方式是一种标准的实现幂等的方式,**你在项目之中可以拿来直接使用,**它在逻辑上的伪代码就像下面这样:

1
2
3
4
5
6
7
8
9
10
11
12
13
boolean isIDExisted = selectByID(ID); // 判断 ID 是否存在

if(isIDExisted) {

return; // 存在则直接返回

} else {

process(message); // 不存在,则处理消息

saveID(ID); // 存储 ID

}

**不过这样会有一个问题:**如果消息在处理之后,还没有来得及写入数据库,消费者宕机了重启之后发现数据库中并没有这条消息,还是会重复执行两次消费逻辑,这时你就需要引入事务机制,保证消息处理和写入数据库必须同时成功或者同时失败,但是这样消息处理的成本就更高了,所以,如果对于消息重复没有特别严格的要求,可以直接使用这种通用的方案,而不考虑引入事务。

**在业务层面怎么处理呢?**这里有很多种处理方式,其中有一种是增加乐观锁的方式。比如,你的消息处理程序需要给一个人的账号加钱,那么你可以通过乐观锁的方式来解决。

**具体的操作方式是这样的:**你给每个人的账号数据中增加一个版本号的字段,在生产消息时先查询这个账户的版本号,并且将版本号连同消息一起发送给消息队列。消费端在拿到消息和版本号后,在执行更新账户金额 SQL 的时候带上版本号,类似于执行:

1
update user set amount = amount + 20, version=version+1 where userId=1 and version=1;

你看,我们在更新数据时给数据加了乐观锁,这样在消费第一条消息时,version 值为 1,SQL 可以执行成功,并且同时把 version 值改为了 2;在执行第二条相同的消息时,由于 version 值不再是 1,所以这条 SQL 不能执行成功,也就保证了消息的幂等性。

消息队列(一)-如何解决消息丢失

消息队列(一)-如何解决消息丢失

消息会丢失的环节

消息从被写入到消息队列,到被消费者消费完成,这个链路上会有哪些地方存在丢失消息的可能呢?其实,主要存在三个场景:

  • 消息从生产者写入到消息队列的过程。

  • 消息在消息队列中的存储场景。

  • 消息被消费者消费的过程。

lost1.jpg

1. 在消息生产的过程中丢失消息

消息的生产者一般是我们的业务服务器,消息队列是独立部署在单独的服务器上的。两者之间的网络虽然是内网,但是也会存在抖动的可能,而一旦发生抖动,消息就有可能因为网络的错误而丢失。

**针对这种情况,我建议你采用的方案是消息重传:**也就是当你发现发送超时后你就将消息重新发一次,但是你也不能无限制地重传消息。一般来说,如果不是消息队列发生故障,或者是到消息队列的网络断开了,重试 2~3 次就可以了。

不过,这种方案可能会造成消息的重复,从而导致在消费的时候会重复消费同样的消息。比方说,消息生产时由于消息队列处理慢或者网络的抖动,导致虽然最终写入消息队列成功,但在生产端却超时了,生产者重传这条消息就会形成重复的消息。

2. 在消息队列中丢失消息

拿 Kafka 举例,消息在 Kafka 中是存储在本地磁盘上的,而为了减少消息存储时对磁盘的随机 I/O,我们一般会将消息先写入到操作系统的 Page Cache 中,然后再找合适的时机刷新到磁盘上。

比如,Kafka 可以配置当达到某一时间间隔,或者累积一定的消息数量的时候再刷盘,也就是所说的异步刷盘。

不过,如果发生机器掉电或者机器异常重启,那么 Page Cache 中还没有来得及刷盘的消息就会丢失了。那么怎么解决呢?

你可能会把刷盘的间隔设置很短,或者设置累积一条消息就就刷盘,但这样频繁刷盘会对性能有比较大的影响,而且从经验来看,出现机器宕机或者掉电的几率也不高,所以我不建议你这样做。

loss2.jpg

如果你的系统对消息丢失的容忍度很低,那么你可以考虑以集群方式部署 Kafka 服务,通过部署多个副本备份数据,保证消息尽量不丢失。

那么它是怎么实现的呢?

Kafka 集群中有一个 Leader 负责消息的写入和消费,可以有多个 Follower 负责数据的备份。Follower 中有一个特殊的集合叫做 ISR(in-sync replicas),当 Leader 故障时,新选举出来的 Leader 会从 ISR 中选择,默认 Leader 的数据会异步地复制给 Follower,这样在 Leader 发生掉电或者宕机时,Kafka 会从 Follower 中消费消息,减少消息丢失的可能。

由于默认消息是异步地从 Leader 复制到 Follower 的,所以一旦 Leader 宕机,那些还没有来得及复制到 Follower 的消息还是会丢失。为了解决这个问题,Kafka 为生产者提供一个选项叫做“acks”,当这个选项被设置为“all”时,生产者发送的每一条消息除了发给 Leader 外还会发给所有的 ISR,并且必须得到 Leader 和所有 ISR 的确认后才被认为发送成功。这样,只有 Leader 和所有的 ISR 都挂了,消息才会丢失。

loss3.jpg

从上面这张图来看,当设置“acks=all”时,需要同步执行 1,3,4 三个步骤,对于消息生产的性能来说也是有比较大的影响的,所以你在实际应用中需要仔细地权衡考量。我给你的建议是:

  1. 如果你需要确保消息一条都不能丢失,那么建议不要开启消息队列的同步刷盘,而是需要使用集群的方式来解决,可以配置当所有 ISR Follower 都接收到消息才返回成功。

  2. 如果对消息的丢失有一定的容忍度,那么建议不部署集群,即使以集群方式部署,也建议配置只发送给一个 Follower 就可以返回成功了。

  3. 我们的业务系统一般对于消息的丢失有一定的容忍度,比如说以上面的红包系统为例,如果红包消息丢失了,我们只要后续给没有发送红包的用户补发红包就好了。

3. 在消费的过程中存在消息丢失的可能

我还是以 Kafka 为例来说明。一个消费者消费消息的进度是记录在消息队列集群中的,而消费的过程分为三步:接收消息、处理消息、更新消费进度。

这里面接收消息和处理消息的过程都可能会发生异常或者失败,比如说,消息接收时网络发生抖动,导致消息并没有被正确的接收到;处理消息时可能发生一些业务的异常导致处理流程未执行完成,这时如果更新消费进度,那么这条失败的消息就永远不会被处理了,也可以认为是丢失了。

所以,在这里你需要注意的是,一定要等到消息接收和处理完成后才能更新消费进度,但是这也会造成消息重复的问题,比方说某一条消息在处理之后,消费者恰好宕机了,那么因为没有更新消费进度,所以当这个消费者重启之后,还会重复地消费这条消息。

4. 最佳实践

  1. 不要使用 producer.send(msg),而要使用 producer.send(msg, callback)。记住,一定要使用带有回调通知的 send 方法。
  2. 设置 acks = all。acks 是 Producer 的一个参数,代表了你对“已提交”消息的定义。如果设置成 all,则表明所有副本 Broker 都要接收到消息,该消息才算是“已提交”。这是最高等级的“已提交”定义。
  3. 设置 retries 为一个较大的值。这里的 retries 同样是 Producer 的参数,对应前面提到的 Producer 自动重试。当出现网络的瞬时抖动时,消息发送可能会失败,此时配置了 retries > 0 的 Producer 能够自动重试消息发送,避免消息丢失。
  4. 设置 unclean.leader.election.enable = false。这是 Broker 端的参数,它控制的是哪些 Broker 有资格竞选分区的 Leader。如果一个 Broker 落后原先的 Leader 太多,那么它一旦成为新的 Leader,必然会造成消息的丢失。故一般都要将该参数设置成 false,即不允许这种情况的发生。
  5. 设置 replication.factor >= 3。这也是 Broker 端的参数。其实这里想表述的是,最好将消息多保存几份,毕竟目前防止消息丢失的主要机制就是冗余。
  6. 设置 min.insync.replicas > 1。这依然是 Broker 端参数,控制的是消息至少要被写入到多少个副本才算是“已提交”。设置成大于 1 可以提升消息持久性。在实际环境中千万不要使用默认值 1。
  7. 确保 replication.factor > min.insync.replicas。如果两者相等,那么只要有一个副本挂机,整个分区就无法正常工作了。我们不仅要改善消息的持久性,防止数据丢失,还要在不降低可用性的基础上完成。推荐设置成 replication.factor = min.insync.replicas + 1。
  8. 确保消息消费完成再提交。Consumer 端有个参数 enable.auto.commit,最好把它设置成 false,并采用手动提交位移的方式。就像前面说的,这对于单 Consumer 多线程处理的场景而言是至关重要的。
缓存专题(五) 如何解决缓存穿透

缓存专题(五) 如何解决缓存穿透

什么是缓存穿透

缓存穿透其实是指从缓存中没有查到数据,而不得不从后端系统(比如数据库)中查询的情况。你可以把数据库比喻为手机,它是经受不了太多的划痕和磕碰的,所以你需要给它贴个膜再套个保护壳,就能对手机起到一定的保护作用了。

不过,少量的缓存穿透不可避免,对系统也是没有损害的,主要有几点原因:

  • 一方面,互联网系统通常会面临极大数据量的考验,而缓存系统在容量上是有限的,不可能存储系统所有的数据,那么在查询未缓存数据的时候就会发生缓存穿透。
  • 另一方面,互联网系统的数据访问模型一般会遵从“80/20 原则”。“80/20 原则”又称为帕累托法则,是意大利经济学家帕累托提出的一个经济学的理论。它是指在一组事物中,最重要的事物通常只占 20%,而剩余的 80% 的事物确实不重要的。把它应用到数据访问的领域,就是我们会经常访问 20% 的热点数据,而另外的 80% 的数据则不会被经常访问。比如你买了很多衣服,很多书,但是其实经常穿的,经常看的,可能也就是其中很小的一部分。

既然缓存的容量有限,并且大部分的访问只会请求 20% 的热点数据,那么理论上说,我们只需要在有限的缓存空间里存储 20% 的热点数据就可以有效地保护脆弱的后端系统了,也就可以放弃缓存另外 80% 的非热点数据了。所以,这种少量的缓存穿透是不可避免的,但是对系统是没有损害的。

那么什么样的缓存穿透对系统有害呢?答案是大量的穿透请求超过了后端系统的承受范围,造成了后端系统的崩溃。如果把少量的请求比作毛毛细雨,那么一旦变成倾盆大雨,引发洪水,冲倒房屋,肯定就不行了。

产生这种大量穿透请求的场景有很多,接下来,我就带你解析这几种场景以及相应的解决方案。

缓存穿透的解决方案

先来考虑这样一种场景:在你的电商系统的用户表中,我们需要通过用户 ID 查询用户的信息,缓存的读写策略采用 Cache Aside 策略。

那么,如果要读取一个用户表中未注册的用户,会发生什么情况呢?按照这个策略,我们会先读缓存,再穿透读数据库。由于用户并不存在,所以缓存和数据库中都没有查询到数据,因此也就不会向缓存中回种数据(也就是向缓存中设置值的意思),这样当再次请求这个用户数据的时候还是会再次穿透到数据库。在这种场景下,缓存并不能有效地阻挡请求穿透到数据库上,它的作用就微乎其微了。

那如何解决缓存穿透呢?一般来说我们会有两种解决方案:回种空值以及使用布隆过滤器。

我们先来看看第一种方案。

回种空值

回顾上面提到的场景,你会发现最大的问题在于数据库中并不存在用户的数据,这就造成无论查询多少次,数据库中永远都不会存在这个用户的数据,穿透永远都会发生。

**类似的场景还有一些:**比如由于代码的 bug 导致查询数据库的时候抛出了异常,这样可以认为从数据库查询出来的数据为空,同样不会回种缓存。

那么,当我们从数据库中查询到空值或者发生异常时,我们可以向缓存中回种一个空值。但是因为空值并不是准确的业务数据,并且会占用缓存的空间,所以我们会给这个空值加一个比较短的过期时间,让空值在短时间之内能够快速过期淘汰。下面是这个流程的伪代码:

1
2
3
4
5
6
7
8
9
10
11
Object nullValue = new Object();
try {
Object valueFromDB = getFromDB(uid); // 从数据库中查询数据
if (valueFromDB == null) {
cache.set(uid, nullValue, 10); // 如果从数据库中查询到空值,就把空值写入缓存,设置较短的超时时间
} else {
cache.set(uid, valueFromDB, 1000);
}
} catch(Exception e) {
cache.set(uid, nullValue, 10);
}

回种空值虽然能够阻挡大量穿透的请求,但如果有大量获取未注册用户信息的请求,缓存内就会有有大量的空值缓存,也就会浪费缓存的存储空间,如果缓存空间被占满了,还会剔除掉一些已经被缓存的用户信息反而会造成缓存命中率的下降。

**所以这个方案,我建议你在使用的时候应该评估一下缓存容量是否能够支撑。**如果需要大量的缓存节点来支持,那么就无法通过通过回种空值的方式来解决,这时你可以考虑使用布隆过滤器。

使用布隆过滤器

1970 年布隆提出了一种布隆过滤器的算法,用来判断一个元素是否在一个集合中。这种算法由一个二进制数组和一个 Hash 算法组成。它的基本思路如下:

我们把集合中的每一个值按照提供的 Hash 算法算出对应的 Hash 值,然后将 Hash 值对数组长度取模后得到需要计入数组的索引值,并且将数组这个位置的值从 0 改成 1。在判断一个元素是否存在于这个集合中时,你只需要将这个元素按照相同的算法计算出索引值,如果这个位置的值为 1 就认为这个元素在集合中,否则则认为不在集合中。

下图是布隆过滤器示意图,我来带你分析一下图内的信息。

nullcache1.jpg

A、B、C 等元素组成了一个集合,元素 D 计算出的 Hash 值所对应的的数组中值是 1,所以可以认为 D 也在集合中。而 F 在数组中的值是 0,所以 F 不在数组中。

那么我们如何使用布隆过滤器来解决缓存穿透的问题呢?

还是以存储用户信息的表为例进行讲解。首先,我们初始化一个很大的数组,比方说长度为 20 亿的数组,接下来我们选择一个 Hash 算法,然后我们将目前现有的所有用户的 ID 计算出 Hash 值并且映射到这个大数组中,映射位置的值设置为 1,其它值设置为 0。

新注册的用户除了需要写入到数据库中之外,它也需要依照同样的算法更新布隆过滤器的数组中,相应位置的值。那么当我们需要查询某一个用户的信息时,我们首先查询这个 ID 在布隆过滤器中是否存在,如果不存在就直接返回空值,而不需要继续查询数据库和缓存,这样就可以极大地减少异常查询带来的缓存穿透。

nullcache2.jpg

布隆过滤器拥有极高的性能,无论是写入操作还是读取操作,时间复杂度都是 O(1),是常量值。在空间上,相对于其他数据结构它也有很大的优势,比如,20 亿的数组需要 2000000000/8/1024/1024 = 238M 的空间,而如果使用数组来存储,假设每个用户 ID 占用 4 个字节的空间,那么存储 20 亿用户需要 2000000000 * 4 / 1024 / 1024 = 7600M 的空间,是布隆过滤器的 32 倍。

不过,任何事物都有两面性,布隆过滤器也不例外,它主要有两个缺陷:

  1. 它在判断元素是否在集合中时是有一定错误几率的,比如它会把不是集合中的元素判断为处在集合中;

  2. 不支持删除元素。

**关于第一个缺陷,主要是 Hash 算法的问题。**因为布隆过滤器是由一个二进制数组和一个 Hash 算法组成的,Hash 算法存在着一定的碰撞几率。Hash 碰撞的含义是不同的输入值经过 Hash 运算后得到了相同的 Hash 结果。

本来,Hash 的含义是不同的输入,依据不同的算法映射成独一无二的固定长度的值,也就是我输入字符串“1”,根据 CRC32 算法,值是 2212294583。但是现实中 Hash 算法的输入值是无限的,输出值的值空间却是固定的,比如 16 位的 Hash 值的值空间是 65535,那么它的碰撞几率就是 1/65535,即如果输入值的个数超过 65535 就一定会发生碰撞。

那么你可能会问为什么不映射成更长的 Hash 值呢?

因为更长的 Hash 值会带来更高的存储成本和计算成本。即使使用 32 位的 Hash 算法,它的值空间长度是 2 的 32 次幂减一,约等于 42 亿,用来映射 20 亿的用户数据,碰撞几率依然有接近 50%。

Hash 的碰撞就造成了两个用户 ID ,A 和 B 会计算出相同的 Hash 值,那么如果 A 是注册的用户,它的 Hash 值对应的数组中的值是 1,那么 B 即使不是注册用户,它在数组中的位置和 A 是相同的,对应的值也是 1,这就产生了误判。

布隆过滤器的误判有一个特点,就是它只会出现“false positive”的情况。这是什么意思呢?当布隆过滤器判断元素在集合中时,这个元素可能不在集合中。但是一旦布隆过滤器判断这个元素不在集合中时,它一定不在集合中。**这一点非常适合解决缓存穿透的问题。**为什么呢?

你想,如果布隆过滤器会将集合中的元素判定为不在集合中,那么我们就不确定,被布隆过滤器判定为不在集合中的元素,是不是在集合中。假设在刚才的场景中,如果有大量查询未注册的用户信息的请求存在,那么这些请求到达布隆过滤器之后,即使布隆过滤器判断为不是注册用户,那么我们也不确定它是不是真的不是注册用户,那么就还是需要去数据库和缓存中查询,这就使布隆过滤器失去了价值。

所以你看,布隆过滤器虽然存在误判的情况,但是还是会减少缓存穿透的情况发生,只是我们需要尽量减少误判的几率,这样布隆过滤器的判断正确的几率更高,对缓存的穿透也更少。一个解决方案是:

使用多个 Hash 算法为元素计算出多个 Hash 值,只有所有 Hash 值对应的数组中的值都为 1 时,才会认为这个元素在集合中。

**布隆过滤器不支持删除元素的缺陷也和 Hash 碰撞有关。**给你举一个例子,假如两个元素 A 和 B 都是集合中的元素,它们有相同的 Hash 值,它们就会映射到数组的同一个位置。这时我们删除了 A,数组中对应位置的值也从 1 变成 0,那么在判断 B 的时候发现值是 0,也会判断 B 是不在集合中的元素,就会得到错误的结论。

**那么我是怎么解决这个问题的呢?**我会让数组中不再只有 0 和 1 两个值,而是存储一个计数。比如如果 A 和 B 同时命中了一个数组的索引,那么这个位置的值就是 2,如果 A 被删除了就把这个值从 2 改为 1。这个方案中的数组不再存储 bit 位,而是存储数值,也就会增加空间的消耗。**所以,你要依据业务场景来选择是否能够使用布隆过滤器,**比如像是注册用户的场景下,因为用户删除的情况基本不存在,所以还是可以使用布隆过滤器来解决缓存穿透的问题的。

讲了这么多,关于布隆过滤器的使用上,我也给你几个建议:

  1. 选择多个 Hash 函数计算多个 Hash 值,这样可以减少误判的几率;

  2. 布隆过滤器会消耗一定的内存空间,所以在使用时需要评估你的业务场景下需要多大的内存,存储的成本是否可以接受。

总的来说,回种空值和布隆过滤器是解决缓存穿透问题的两种最主要的解决方案,但是它们也有各自的适用场景,并不能解决所有问题。比方说当有一个极热点的缓存项,它一旦失效会有大量请求穿透到数据库,这会对数据库造成瞬时极大的压力,我们把这个场景叫做“dog-pile effect”(狗桩效应),

这是典型的缓存并发穿透的问题,**那么,我们如何来解决这个问题呢?**解决狗桩效应的思路是尽量地减少缓存穿透后的并发,方案也比较简单:

  1. 在代码中,控制在某一个热点缓存项失效之后启动一个后台线程,穿透到数据库,将数据加载到缓存中,在缓存未加载之前,所有访问这个缓存的请求都不再穿透而直接返回。

  2. 通过在 Memcached 或者 Redis 中设置分布式锁,只有获取到锁的请求才能够穿透到数据库。

分布式锁的方式也比较简单,比方说 ID 为 1 的用户是一个热点用户,当他的用户信息缓存失效后,我们需要从数据库中重新加载数据时,先向 Memcached 中写入一个 Key 为”lock.1”的缓存项,然后去数据库里面加载数据,当数据加载完成后再把这个 Key 删掉。这时,如果另外一个线程也要请求这个用户的数据,它发现缓存中有 Key 为“lock.1”的缓存,就认为目前已经有线程在加载数据库中的值到缓存中了,它就可以重新去缓存中查询数据,不再穿透数据库了。

缓存专题(四) 分布式缓存高可用

缓存专题(四) 分布式缓存高可用

分布式缓存的高可用方案主要选择的方案有客户端方案、中间代理层方案和服务端方案三大类:

  • 客户端方案就是在客户端配置多个缓存的节点,通过缓存写入和读取算法策略来实现分布式,从而提高缓存的可用性。
  • 中间代理层方案是在应用代码和缓存节点之间增加代理层,客户端所有的写入和读取的请求都通过代理层,而代理层中会内置高可用策略,帮助提升缓存系统的高可用。
  • 服务端方案就是 Redis 2.4 版本后提出的 Redis Sentinel 方案。

掌握这些方案可以帮助你,抵御部分缓存节点故障导致的,缓存命中率下降的影响,增强你的系统的鲁棒性。

客户端方案

在客户端方案中,你需要关注缓存的写和读两个方面:

  • 写入数据时,需要把被写入缓存的数据分散到多个节点中,即进行数据分片;
  • 读数据时,可以利用多组的缓存来做容错,提升缓存系统的可用性。关于读数据,这里可以使用主从和多副本两种策略,两种策略是为了解决不同的问题而提出的。

下面我就带你一起详细地看一下到底要怎么做。

1. 缓存数据如何分片

单一的缓存节点受到机器内存、网卡带宽和单节点请求量的限制,不能承担比较高的并发,因此我们考虑将数据分片,依照分片算法将数据打散到多个不同的节点上,每个节点上存储部分数据。

这样在某个节点故障的情况下,其他节点也可以提供服务,保证了一定的可用性。这就好比不要把鸡蛋放在同一个篮子里,这样一旦一个篮子掉在地上,摔碎了,别的篮子里还有没摔碎的鸡蛋,不至于一个不剩。

一般来讲,分片算法常见的就是 Hash 分片算法和一致性 Hash 分片算法两种。

Hash 分片的算法就是对缓存的 Key 做哈希计算,然后对总的缓存节点个数取余。你可以这么理解:

比如说,我们部署了三个缓存节点组成一个缓存的集群,当有新的数据要写入时,我们先对这个缓存的 Key 做比如 crc32 等 Hash 算法生成 Hash 值,然后对 Hash 值模 3,得出的结果就是要存入缓存节点的序号。

cache1.jpg

这个算法最大的优点就是简单易理解,缺点是当增加或者减少缓存节点时,缓存总的节点个数变化造成计算出来的节点发生变化,从而造成缓存失效不可用。**所以我建议你,**如果采用这种方法,最好建立在你对于这组缓存命中率下降不敏感,比如下面还有另外一层缓存来兜底的情况下。

**当然了,用一致性 Hash 算法可以很好地解决增加和删减节点时,命中率下降的问题。**在这个算法中,我们将整个 Hash 值空间组织成一个虚拟的圆环,然后将缓存节点的 IP 地址或者主机名做 Hash 取值后,放置在这个圆环上。当我们需要确定某一个 Key 需要存取到哪个节点上的时候,先对这个 Key 做同样的 Hash 取值,确定在环上的位置,然后按照顺时针方向在环上“行走”,遇到的第一个缓存节点就是要访问的节点。比方说下面这张图里面,Key 1 和 Key 2 会落入到 Node 1 中,Key 3、Key 4 会落入到 Node 2 中,Key 5 落入到 Node 3 中,Key 6 落入到 Node 4 中。

cache2.jpg

这时如果在 Node 1 和 Node 2 之间增加一个 Node 5,你可以看到原本命中 Node 2 的 Key 3 现在命中到 Node 5,而其它的 Key 都没有变化;同样的道理,如果我们把 Node 3 从集群中移除,那么只会影响到 Key 5 。所以你看,**在增加和删除节点时,只有少量的 Key 会“漂移”到其它节点上,**而大部分的 Key 命中的节点还是会保持不变,从而可以保证命中率不会大幅下降。

cache3.jpg

不过,事物总有两面性。虽然这个算法对命中率的影响比较小,但它还是存在问题:

  • 缓存节点在圆环上分布不平均,会造成部分缓存节点的压力较大;当某个节点故障时,这个节点所要承担的所有访问都会被顺移到另一个节点上,会对后面这个节点造成压力。
  • 一致性 Hash 算法的脏数据问题。

极端情况下,比如一个有三个节点 A、B、C 承担整体的访问,每个节点的访问量平均,A 故障后,B 将承担双倍的压力(A 和 B 的全部请求),当 B 承担不了流量 Crash 后,C 也将因为要承担原先三倍的流量而 Crash,这就造成了整体缓存系统的雪崩。

说到这儿,你可能觉得很可怕,但也不要太担心,我们程序员就是要能够创造性地解决各种问题,所以你可以在一致性 Hash 算法中引入虚拟节点的概念。

它将一个缓存节点计算多个 Hash 值分散到圆环的不同位置,这样既实现了数据的平均,而且当某一个节点故障或者退出的时候,它原先承担的 Key 将以更加平均的方式分配到其他节点上,从而避免雪崩的发生。

**其次,就是一致性 Hash 算法的脏数据问题。为什么会产生脏数据呢?**比方说,在集群中有两个节点 A 和 B,客户端初始写入一个 Key 为 k,值为 3 的缓存数据到 Cache A 中。这时如果要更新 k 的值为 4,但是缓存 A 恰好和客户端连接出现了问题,那这次写入请求会写入到 Cache B 中。接下来缓存 A 和客户端的连接恢复,当客户端要获取 k 的值时,就会获取到存在 Cache A 中的脏数据 3,而不是 Cache B 中的 4。

**所以,在使用一致性 Hash 算法时一定要设置缓存的过期时间,**这样当发生漂移时,之前存储的脏数据可能已经过期,就可以减少存在脏数据的几率。

cache4.jpg很显然,数据分片最大的优势就是缓解缓存节点的存储和访问压力,但同时它也让缓存的使用更加复杂。在 MultiGet(批量获取)场景下,单个节点的访问量并没有减少,同时节点数太多会造成缓存访问的 SLA(即“服务等级协议”,SLA 代表了网站服务可用性)得不到很好的保证,因为根据木桶原则,SLA 取决于最慢、最坏的节点的情况,节点数过多也会增加出问题的概率,因此我推荐 4 到 6 个节点为佳。

中间代理层方案

虽然客户端方案已经能解决大部分的问题,但是只能在单一语言系统之间复用。例如微博使用 Java 语言实现了这么一套逻辑,我使用 PHP 就难以复用,需要重新写一套,很麻烦。**而中间代理层的方案就可以解决这个问题。**你可以将客户端解决方案的经验移植到代理层中,通过通用的协议(如 Redis 协议)来实现在其他语言中的复用。

如果你来自研缓存代理层,你就可以将客户端方案中的高可用逻辑封装在代理层代码里面,这样用户在使用你的代理层的时候就不需要关心缓存的高可用是如何做的,只需要依赖你的代理层就好了。

除此以外,业界也有很多中间代理层方案,比如 Facebook 的Mcrouter,Twitter 的Twemproxy,豌豆荚的Codis。它们的原理基本上可以由一张图来概括:

cache5.jpg

看这张图你有什么发现吗? 所有缓存的读写请求都是经过代理层完成的。代理层是无状态的,主要负责读写请求的路由功能,并且在其中内置了一些高可用的逻辑,不同的开源中间代理层方案中使用的高可用策略各有不同。比如在 Twemproxy 中,Proxy 保证在某一个 Redis 节点挂掉之后会把它从集群中移除,后续的请求将由其他节点来完成;而 Codis 的实现略复杂,它提供了一个叫 Codis Ha 的工具来实现自动从节点提主节点,在 3.2 版本之后换做了 Redis Sentinel 方式,从而实现 Redis 节点的高可用。

服务端方案

Redis 在 2.4 版本中提出了 Redis Sentinel 模式来解决主从 Redis 部署时的高可用问题,它可以在主节点挂了以后自动将从节点提升为主节点,保证整体集群的可用性,整体的架构如下图所示:

cache6.jpg

Redis Sentinel 也是集群部署的,这样可以避免 Sentinel 节点挂掉造成无法自动故障恢复的问题,每一个 Sentinel 节点都是无状态的。在 Sentinel 中会配置 Master 的地址,Sentinel 会时刻监控 Master 的状态,当发现 Master 在配置的时间间隔内无响应,就认为 Master 已经挂了,Sentinel 会从从节点中选取一个提升为主节点,并且把所有其他的从节点作为新主的从节点。Sentinel 集群内部在仲裁的时候,会根据配置的值来决定当有几个 Sentinel 节点认为主挂掉可以做主从切换的操作,也就是集群内部需要对缓存节点的状态达成一致才行。

Redis Sentinel 不属于代理层模式,因为对于缓存的写入和读取请求不会经过 Sentinel 节点。Sentinel 节点在架构上和主从是平级的,是作为管理者存在的,所以可以认为是在服务端提供的一种高可用方案。