消息队列基础补充
消息队列基础概念

消息队列基础概念

消息队列提供的功能

  • 异步处理
  • 流量控制
  • 消息解耦

队列和主题的区别

最初的消息队列,就是一个严格意义上的队列。在计算机领域,“队列(Queue)”是一种数据结构,有完整而严格的定义。在维基百科中,队列的定义是这样的:

队列是先进先出(FIFO, First-In-First-Out)的线性表(Linear List)。在具体应用中通常用链表或者数组来实现。队列只允许在后端(称为 rear)进行插入操作,在前端(称为 front)进行删除操作。

**早期的消息队列,就是按照“队列”的数据结构来设计的。**我们一起看下这个图,生产者(Producer)发消息就是入队操作,消费者(Consumer)收消息就是出队也就是删除操作,服务端存放消息的容器自然就称为“队列”。

这就是最初的一种消息模型:队列模型。
queue.jpeg

如果需要将一份消息数据分发给多个消费者,要求每个消费者都能收到全量的消息,例如,对于一份订单数据,风控系统、分析系统、支付系统等都需要接收消息。这个时候,单个队列就满足不了需求,一个可行的解决方式是,为每个消费者创建一个单独的队列,让生产者发送多份。

为了解决这个问题,演化出了另外一种消息模型:“发布 - 订阅模型(Publish-Subscribe Pattern)”。

queue2.jpeg

在发布 - 订阅模型中,消息的发送方称为发布者(Publisher),消息的接收方称为订阅者(Subscriber),服务端存放消息的容器称为主题(Topic)。发布者将消息发送到主题中,订阅者在接收消息之前需要先“订阅主题”。“订阅”在这里既是一个动作,同时还可以认为是主题在消费时的一个逻辑副本,每份订阅中,订阅者都可以接收到主题的所有消息。

保障消息队列不丢失

其实,现在主流的消息队列产品都提供了非常完善的消息可靠性保证机制,完全可以做到在消息传递过程中,即使发生网络中断或者硬件故障,也能确保消息的可靠传递,不丢消息。

绝大部分丢消息的原因都是由于开发者不熟悉消息队列,没有正确使用和配置消息队列导致的。虽然不同的消息队列提供的 API 不一样,相关的配置项也不同,但是在保证消息可靠传递这块儿,它们的实现原理是一样的。

检测消息丢失的方法
  • 分布式链路跟踪系统
  • 根据生产者标示+分区号+递增消息号判断
  • 生产者保存需要核对是否丢失的数据,消费者消费完之后需要与生产者核对数据

像 Kafka 和 RocketMQ 这样的消息队列,它是不保证在 Topic 上的严格顺序的,只能保证分区上的消息是有序的,所以我们在发消息的时候必须要指定分区,并且,在每个分区单独检测消息序号的连续性。

如果你的系统中 Producer 是多实例的,由于并不好协调多个 Producer 之间的发送顺序,所以也需要每个 Producer 分别生成各自的消息序号,并且需要附加上 Producer 的标识,在 Consumer 端按照每个 Producer 分别来检测序号的连续性。

Consumer 实例的数量最好和分区数量一致,做到 Consumer 和分区一一对应,这样会比较方便地在 Consumer 内检测消息序号的连续性。

如何确保消息不丢失

一条消息从生产到消费完成这个过程,可以划分三个阶段:

queue1.jpeg
  1. 生产阶段

    在生产阶段,消息队列通过最常用的请求确认机制,来保证消息的可靠传递:当你的代码调用发消息方法时,消息队列的客户端会把消息发送到 Broker,Broker 收到消息后,会给客户端返回一个确认响应,表明消息已经收到了。客户端收到响应后,完成了一次正常消息的发送。

    只要 Producer 收到了 Broker 的确认响应,就可以保证消息在生产阶段不会丢失。有些消息队列在长时间没收到发送确认响应后,会自动重试,如果重试再失败,就会以返回值或者异常的方式告知用户。

    你在编写发送消息代码时,需要注意,正确处理返回值或者捕获异常,就可以保证这个阶段的消息不会丢失。

  2. 存储阶段

    在存储阶段正常情况下,只要 Broker 在正常运行,就不会出现丢失消息的问题,但是如果 Broker 出现了故障,比如进程死掉了或者服务器宕机了,还是可能会丢失消息的。

    如果对消息的可靠性要求非常高,可以通过配置 Broker 参数来避免因为宕机丢消息。

    对于单个节点的 Broker,需要配置 Broker 参数,在收到消息后,将消息写入磁盘后再给 Producer 返回确认响应,这样即使发生宕机,由于消息已经被写入磁盘,就不会丢失消息,恢复后还可以继续消费。例如,在 RocketMQ 中,需要将刷盘方式 flushDiskType 配置为 SYNC_FLUSH 同步刷盘。

    如果是 Broker 是由多个节点组成的集群,需要将 Broker 集群配置成:至少将消息发送到 2 个以上的节点,再给客户端回复发送确认响应。这样当某个 Broker 宕机时,其他的 Broker 可以替代宕机的 Broker,也不会发生消息丢失。

  3. 消费阶段

    消费阶段采用和生产阶段类似的确认机制来保证消息的可靠传递,客户端从 Broker 拉取消息后,执行用户的消费业务逻辑,成功后,才会给 Broker 发送消费确认响应。如果 Broker 没有收到消费确认响应,下次拉消息的时候还会返回同一条消息,确保消息不会在网络传输过程中丢失,也不会因为客户端在执行消费逻辑中出错导致丢失。

    你在编写消费代码时需要注意的是,不要在收到消息后就立即发送消费确认,而是应该在执行完所有消费业务逻辑之后,再发送消费确认。

对于kafka的相关使用可以参考之前的一篇文章【消息队列(一)-如何解决消息丢失】

解决消息重复问题

消息重复的情况必然存在

在 MQTT 协议中,给出了三种传递消息时能够提供的服务质量标准,这三种服务质量从低到高依次是:

  • At most once: 至多一次。消息在传递时,最多会被送达一次。换一个说法就是,没什么消息可靠性保证,允许丢消息。一般都是一些对消息可靠性要求不太高的监控场景使用,比如每分钟上报一次机房温度数据,可以接受数据少量丢失。
  • At least once: 至少一次。消息在传递时,至少会被送达一次。也就是说,不允许丢消息,但是允许有少量重复消息出现。
  • Exactly once:恰好一次。消息在传递时,只会被送达一次,不允许丢失也不允许重复,这个是最高的等级。

这个服务质量标准不仅适用于 MQTT,对所有的消息队列都是适用的。我们现在常用的绝大部分消息队列提供的服务质量都是 At least once,包括 RocketMQ、RabbitMQ 和 Kafka 都是这样。也就是说,消息队列很难保证消息不重复。

利用幂等性解决重复消息问题
  1. 利用数据库的唯一约束实现幂等

    不光是可以使用关系型数据库,只要是支持类似“INSERT IF NOT EXIST”语义的存储类系统都可以用于实现幂等,比如,你可以用 Redis 的 SETNX 命令来替代数据库中的唯一约束,来实现幂等消费。

  2. 为更新的数据设置前置条件

    另外一种实现幂等的思路是,给数据变更设置一个前置条件,如果满足条件就更新数据,否则拒绝更新数据,在更新数据的时候,同时变更前置条件中需要判断的数据。这样,重复执行这个操作时,由于第一次更新数据的时候已经变更了前置条件中需要判断的数据,不满足前置条件,则不会重复执行更新数据操作。
    但是,如果我们要更新的数据不是数值,或者我们要做一个比较复杂的更新操作怎么办?用什么作为前置判断条件呢?更加通用的方法是,给你的数据增加一个版本号属性,每次更数据前,比较当前数据的版本号是否和消息中的版本号一致,如果不一致就拒绝更新数据,更新数据的同时将版本号 +1,一样可以实现幂等更新。

  3. 记录并检查操作
    如果上面提到的两种实现幂等方法都不能适用于你的场景,还有一种通用性最强,适用范围最广的实现幂等性方法:记录并检查操作,也称为“Token 机制或者 GUID(全局唯一 ID)机制”,实现的思路特别简单:在执行数据更新操作之前,先检查一下是否执行过这个更新操作。

具体的实现方法是,在发送消息时,给每条消息指定一个全局唯一的 ID,消费时,先根据这个 ID 检查这条消息是否有被消费过,如果没有消费过,才更新数据,然后将消费状态置为已消费。

原理和实现是不是很简单?其实一点儿都不简单,在分布式系统中,这个方法其实是非常难实现的,在“检查消费状态,然后更新数据并且设置消费状态”中,三个操作必须作为一组操作保证原子性,才能真正实现幂等,否则就会出现 Bug。

对于这个问题,当然我们可以用事务来实现,也可以用锁来实现,但是在分布式系统中,无论是分布式事务还是分布式锁都是比较难解决问题。

对于kafka的相关使用可以参考之前的一篇文章【消息队列(二)-消息幂等】

处理消息积压

优化消息收发性能,预防消息积压的方法有两种,增加批量或者是增加并发,在发送端这两种方法都可以使用,在消费端需要注意的是,增加并发需要同步扩容分区数量,否则是起不到效果的。

对于系统发生消息积压的情况,需要先解决积压,再分析原因,毕竟保证系统的可用性是首先要解决的问题。快速解决积压的方法就是通过水平扩容增加 Consumer 的实例数量。

消息队列(二)-消息幂等

消息队列(二)-消息幂等

什么是幂等

幂等是一个数学上的概念,它的含义是多次执行同一个操作和执行一次操作,最终得到的结果是相同的。

如果我们消费一条消息的时候,要给现有的库存数量减 1,那么如果消费两条相同的消息就会给库存数量减 2,这就不是幂等的。而如果消费一条消息后,处理逻辑是将库存的数量设置为 0,或者是如果当前库存数量是 10 时则减 1,这样在消费多条消息时,所得到的结果就是相同的,这就是幂等的。

**说白了,你可以这么理解“幂等”:**一件事儿无论做多少次都和做一次产生的结果是一样的,那么这件事儿就具有幂等性。

在生产、消费过程中增加消息幂等性的保证

消息在生产和消费的过程中都可能会产生重复,所以你要做的是,在生产过程和消费过程中增加消息幂等性的保证,这样就可以认为从最终结果上来看,消息实际上是只被消费了一次的。

**在消息生产过程中,**在 Kafka0.11 版本和 Pulsar 中都支持“producer idempotency”的特性,翻译过来就是生产过程的幂等性,这种特性保证消息虽然可能在生产端产生重复,但是最终在消息队列存储时只会存储一份。

它的做法是给每一个生产者一个唯一的 ID,并且为生产的每一条消息赋予一个唯一 ID,消息队列的服务端会存储 < 生产者 ID,最后一条消息 ID> 的映射。当某一个生产者产生新的消息时,消息队列服务端会比对消息 ID 是否与存储的最后一条 ID 一致,如果一致,就认为是重复的消息,服务端会自动丢弃。

loss4.jpg

而在消费端,幂等性的保证会稍微复杂一些,你可以从通用层和业务层两个层面来考虑。

在通用层面,你可以在消息被生产的时候,使用发号器给它生成一个全局唯一的消息 ID,消息被处理之后,把这个 ID 存储在数据库中,在处理下一条消息之前,先从数据库里面查询这个全局 ID 是否被消费过,如果被消费过就放弃消费。

你可以看到,无论是生产端的幂等性保证方式,还是消费端通用的幂等性保证方式,它们的共同特点都是为每一个消息生成一个唯一的 ID,然后在使用这个消息的时候,先比对这个 ID 是否已经存在,如果存在,则认为消息已经被使用过。所以这种方式是一种标准的实现幂等的方式,**你在项目之中可以拿来直接使用,**它在逻辑上的伪代码就像下面这样:

1
2
3
4
5
6
7
8
9
10
11
12
13
boolean isIDExisted = selectByID(ID); // 判断 ID 是否存在

if(isIDExisted) {

return; // 存在则直接返回

} else {

process(message); // 不存在,则处理消息

saveID(ID); // 存储 ID

}

**不过这样会有一个问题:**如果消息在处理之后,还没有来得及写入数据库,消费者宕机了重启之后发现数据库中并没有这条消息,还是会重复执行两次消费逻辑,这时你就需要引入事务机制,保证消息处理和写入数据库必须同时成功或者同时失败,但是这样消息处理的成本就更高了,所以,如果对于消息重复没有特别严格的要求,可以直接使用这种通用的方案,而不考虑引入事务。

**在业务层面怎么处理呢?**这里有很多种处理方式,其中有一种是增加乐观锁的方式。比如,你的消息处理程序需要给一个人的账号加钱,那么你可以通过乐观锁的方式来解决。

**具体的操作方式是这样的:**你给每个人的账号数据中增加一个版本号的字段,在生产消息时先查询这个账户的版本号,并且将版本号连同消息一起发送给消息队列。消费端在拿到消息和版本号后,在执行更新账户金额 SQL 的时候带上版本号,类似于执行:

1
update user set amount = amount + 20, version=version+1 where userId=1 and version=1;

你看,我们在更新数据时给数据加了乐观锁,这样在消费第一条消息时,version 值为 1,SQL 可以执行成功,并且同时把 version 值改为了 2;在执行第二条相同的消息时,由于 version 值不再是 1,所以这条 SQL 不能执行成功,也就保证了消息的幂等性。

消息队列(一)-如何解决消息丢失

消息队列(一)-如何解决消息丢失

消息会丢失的环节

消息从被写入到消息队列,到被消费者消费完成,这个链路上会有哪些地方存在丢失消息的可能呢?其实,主要存在三个场景:

  • 消息从生产者写入到消息队列的过程。

  • 消息在消息队列中的存储场景。

  • 消息被消费者消费的过程。

lost1.jpg

1. 在消息生产的过程中丢失消息

消息的生产者一般是我们的业务服务器,消息队列是独立部署在单独的服务器上的。两者之间的网络虽然是内网,但是也会存在抖动的可能,而一旦发生抖动,消息就有可能因为网络的错误而丢失。

**针对这种情况,我建议你采用的方案是消息重传:**也就是当你发现发送超时后你就将消息重新发一次,但是你也不能无限制地重传消息。一般来说,如果不是消息队列发生故障,或者是到消息队列的网络断开了,重试 2~3 次就可以了。

不过,这种方案可能会造成消息的重复,从而导致在消费的时候会重复消费同样的消息。比方说,消息生产时由于消息队列处理慢或者网络的抖动,导致虽然最终写入消息队列成功,但在生产端却超时了,生产者重传这条消息就会形成重复的消息。

2. 在消息队列中丢失消息

拿 Kafka 举例,消息在 Kafka 中是存储在本地磁盘上的,而为了减少消息存储时对磁盘的随机 I/O,我们一般会将消息先写入到操作系统的 Page Cache 中,然后再找合适的时机刷新到磁盘上。

比如,Kafka 可以配置当达到某一时间间隔,或者累积一定的消息数量的时候再刷盘,也就是所说的异步刷盘。

不过,如果发生机器掉电或者机器异常重启,那么 Page Cache 中还没有来得及刷盘的消息就会丢失了。那么怎么解决呢?

你可能会把刷盘的间隔设置很短,或者设置累积一条消息就就刷盘,但这样频繁刷盘会对性能有比较大的影响,而且从经验来看,出现机器宕机或者掉电的几率也不高,所以我不建议你这样做。

loss2.jpg

如果你的系统对消息丢失的容忍度很低,那么你可以考虑以集群方式部署 Kafka 服务,通过部署多个副本备份数据,保证消息尽量不丢失。

那么它是怎么实现的呢?

Kafka 集群中有一个 Leader 负责消息的写入和消费,可以有多个 Follower 负责数据的备份。Follower 中有一个特殊的集合叫做 ISR(in-sync replicas),当 Leader 故障时,新选举出来的 Leader 会从 ISR 中选择,默认 Leader 的数据会异步地复制给 Follower,这样在 Leader 发生掉电或者宕机时,Kafka 会从 Follower 中消费消息,减少消息丢失的可能。

由于默认消息是异步地从 Leader 复制到 Follower 的,所以一旦 Leader 宕机,那些还没有来得及复制到 Follower 的消息还是会丢失。为了解决这个问题,Kafka 为生产者提供一个选项叫做“acks”,当这个选项被设置为“all”时,生产者发送的每一条消息除了发给 Leader 外还会发给所有的 ISR,并且必须得到 Leader 和所有 ISR 的确认后才被认为发送成功。这样,只有 Leader 和所有的 ISR 都挂了,消息才会丢失。

loss3.jpg

从上面这张图来看,当设置“acks=all”时,需要同步执行 1,3,4 三个步骤,对于消息生产的性能来说也是有比较大的影响的,所以你在实际应用中需要仔细地权衡考量。我给你的建议是:

  1. 如果你需要确保消息一条都不能丢失,那么建议不要开启消息队列的同步刷盘,而是需要使用集群的方式来解决,可以配置当所有 ISR Follower 都接收到消息才返回成功。

  2. 如果对消息的丢失有一定的容忍度,那么建议不部署集群,即使以集群方式部署,也建议配置只发送给一个 Follower 就可以返回成功了。

  3. 我们的业务系统一般对于消息的丢失有一定的容忍度,比如说以上面的红包系统为例,如果红包消息丢失了,我们只要后续给没有发送红包的用户补发红包就好了。

3. 在消费的过程中存在消息丢失的可能

我还是以 Kafka 为例来说明。一个消费者消费消息的进度是记录在消息队列集群中的,而消费的过程分为三步:接收消息、处理消息、更新消费进度。

这里面接收消息和处理消息的过程都可能会发生异常或者失败,比如说,消息接收时网络发生抖动,导致消息并没有被正确的接收到;处理消息时可能发生一些业务的异常导致处理流程未执行完成,这时如果更新消费进度,那么这条失败的消息就永远不会被处理了,也可以认为是丢失了。

所以,在这里你需要注意的是,一定要等到消息接收和处理完成后才能更新消费进度,但是这也会造成消息重复的问题,比方说某一条消息在处理之后,消费者恰好宕机了,那么因为没有更新消费进度,所以当这个消费者重启之后,还会重复地消费这条消息。

4. 最佳实践

  1. 不要使用 producer.send(msg),而要使用 producer.send(msg, callback)。记住,一定要使用带有回调通知的 send 方法。
  2. 设置 acks = all。acks 是 Producer 的一个参数,代表了你对“已提交”消息的定义。如果设置成 all,则表明所有副本 Broker 都要接收到消息,该消息才算是“已提交”。这是最高等级的“已提交”定义。
  3. 设置 retries 为一个较大的值。这里的 retries 同样是 Producer 的参数,对应前面提到的 Producer 自动重试。当出现网络的瞬时抖动时,消息发送可能会失败,此时配置了 retries > 0 的 Producer 能够自动重试消息发送,避免消息丢失。
  4. 设置 unclean.leader.election.enable = false。这是 Broker 端的参数,它控制的是哪些 Broker 有资格竞选分区的 Leader。如果一个 Broker 落后原先的 Leader 太多,那么它一旦成为新的 Leader,必然会造成消息的丢失。故一般都要将该参数设置成 false,即不允许这种情况的发生。
  5. 设置 replication.factor >= 3。这也是 Broker 端的参数。其实这里想表述的是,最好将消息多保存几份,毕竟目前防止消息丢失的主要机制就是冗余。
  6. 设置 min.insync.replicas > 1。这依然是 Broker 端参数,控制的是消息至少要被写入到多少个副本才算是“已提交”。设置成大于 1 可以提升消息持久性。在实际环境中千万不要使用默认值 1。
  7. 确保 replication.factor > min.insync.replicas。如果两者相等,那么只要有一个副本挂机,整个分区就无法正常工作了。我们不仅要改善消息的持久性,防止数据丢失,还要在不降低可用性的基础上完成。推荐设置成 replication.factor = min.insync.replicas + 1。
  8. 确保消息消费完成再提交。Consumer 端有个参数 enable.auto.commit,最好把它设置成 false,并采用手动提交位移的方式。就像前面说的,这对于单 Consumer 多线程处理的场景而言是至关重要的。