为了便于说明问题,我们先使用一个小一点儿的表,建表和初始化语句如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CREATE TABLE `t` ( `id` int (11 ) NOT NULL , `c` int (11 ) DEFAULT NULL , `d` int (11 ) DEFAULT NULL , PRIMARY KEY (`id`), KEY `c` (`c`) ) ENGINE= InnoDB; insert into t values (0 ,0 ,0 ), (5 ,5 ,5 ), (10 ,10 ,10 ), (15 ,15 ,15 ), (20 ,20 ,20 ), (25 ,25 ,25 );
这个表除了主键 id 外,还有一个索引 c,初始化语句在表中插入了 6 行数据。
下面的语句序列,是怎么加锁的,加的锁又是什么时候释放的呢?
1 select * from t where d = 5 for update ;
比较好理解的是,这个语句会命中 d = 5
的这一行,对应的主键 id = 5
,因此在 select
语句执行完成后,会在id = 5
这一行主键上加一个写锁,而且由于两阶段锁协议,这个写锁会在执行 commit 语句的时候释放。
由于字段 d 上没有索引,因此这条查询语句会做全表扫描。那么,其他被扫描到的,但是不满足条件的 5 行记录上,会不会被加锁呢?
我们知道,InnoDB 的默认事务隔离级别是可重复读,所以本文接下来没有特殊说明的部分,都是设定在可重复读隔离级别下。
幻读是什么? 现在,我们就来分析一下,假设只在 id = 5
这一行加锁,而其他行的不加锁的话,会怎么样。
下面先来看一下这个场景(这个结果是建立在前面假设之上,实际上是错误的):
假设只在 id = 5
这一行加行锁,可以看到,session A 里执行了三次查询,分别是 Q1、Q2 和 Q3。它们的 SQL 语句相同,都是 select * fom t where d=5 for update
。我们来看一下这三条 SQL 语句,分别会返回什么结果。
Q1 只返回 id = 5
这一行;
在 T2 时刻,session B 把 id = 0
这一行的 d 值改成了 5,因此 T3 时刻 Q2 查出来的是 id = 0
和 id = 5
这两行;
在 T4 时刻,session C 又插入一行(1,1,5),因此 T5 时刻 Q3 查出来的是 id = 0
、id = 1
和 id = 5
的这三行。
其中,Q3 读到 id = 1
这一行的现象,被称为“幻读”。也就是说,幻读指的是一个事务在前后两次查询同一个范围的时候,后一次查询看到了前一次查询没有看到的行。
这里,我需要对“幻读”做一个说明:
在可重复读隔离级别下,普通的查询是快照读,是不会看到别的事务插入的数据的。因此,幻读在当前读 下才会出现。
上面 session B 的修改结果,被 session A 之后的 select 语句用当前读看到,不能称为幻读。幻读仅专指新插入的行。
如果只从我们学到的事务可见性规则来分析的话,上面这三条 SQL 语句的返回结果都没有问题。
因为这三个查询都是加了 for update,都是当前读。而当前读的规则,就是要能读到所有已经提交的记录的最新值。并且,session B 和 sessionC 的两条语句,执行后就会提交,所以 Q2 和 Q3 就是应该看到这两个事务的操作效果,而且也看到了,这跟事务的可见性规则并不矛盾。
幻读有什么问题? **首先是语义上的。**session A 在 T1 时刻就声明了,“我要把所有 d=5 的行锁住,不准别的事务进行读写操作”。所以我们假设只锁了id = 5
这一行的语义与select * from t where d = 5 for update
不同。
其次,是数据一致性的问题。 **这个数据不一致到底是怎么引入的?**肯定是前面的假设有问题。
我们把扫描过程中碰到的行,也都加上写锁,再来看看执行效果。
由于 session A 把所有的行都加了写锁,所以 session B 在执行第一个 update 语句的时候就被锁住了。需要等到 T6 时刻 session A 提交以后,session B 才能继续执行。
这样对于 id = 0
这一行,在数据库里的最终结果还是 (0,5,5)。在 binlog 里面,执行序列是这样的:
1 2 3 4 5 6 7 insert into t values (1 ,1 ,5 ); update t set c= 5 where id= 1 ; update t set d= 100 where d= 5 ; update t set d= 5 where id= 0 ; update t set c= 5 where id= 0 ;
可以看到,按照日志顺序执行,id = 0
这一行的最终结果也是 (0,5,5)。所以,id = 0
这一行的问题解决了。
但同时你也可以看到,id = 1
这一行,在数据库里面的结果是 (1,5,5),而根据 binlog 的执行结果是 (1,5,100),也就是说幻读的问题还是没有解决。为什么我们已经这么“凶残”地,把所有的记录都上了锁,还是阻止不了 id = 1
这一行的插入和更新呢?
原因很简单。在 T3 时刻,我们给所有行加锁的时候,id = 1
这一行还不存在,不存在也就加不上锁。
**也就是说,即使把所有的记录都加上锁,还是阻止不了新插入的记录,**这也是为什么“幻读”会被单独拿出来解决的原因。
如何解决幻读? 现在你知道了,产生幻读的原因是,行锁只能锁住行,但是新插入记录这个动作,要更新的是记录之间的“间隙”。因此,为了解决幻读问题,InnoDB 只好引入新的锁,也就是间隙锁 (Gap Lock)。
顾名思义,间隙锁,锁的就是两个值之间的空隙。比如文章开头的表 t,初始化插入了 6 个记录,这就产生了 7 个间隙。
这样,当你执行 select * from t where d=5 for update
的时候,就不止是给数据库中已有的 6 个记录加上了行锁,还同时加了 7 个间隙锁。这样就确保了无法再插入新的记录。
也就是说这时候,在一行行扫描的过程中,不仅将给行加上了行锁,还给行两边的空隙,也加上了间隙锁。
现在你知道了,数据行是可以加上锁的实体,数据行之间的间隙,也是可以加上锁的实体。但是间隙锁跟我们之前碰到过的锁都不太一样。
比如行锁,分成读锁和写锁。下图就是这两种类型行锁的冲突关系。
也就是说,跟行锁有冲突关系的是“另外一个行锁”。
但是间隙锁不一样,**跟间隙锁存在冲突关系的,是“往这个间隙中插入一个记录”这个操作。**间隙锁之间都不存在冲突关系。
这句话不太好理解,我给你举个例子:
这里 session B 并不会被堵住。因为表 t 里并没有 c = 7
这个记录,因此 session A 加的是间隙锁 (5,10)。而 session B 也是在这个间隙加的间隙锁。它们有共同的目标,即:保护这个间隙,不允许插入值。但,它们之间是不冲突的。
间隙锁和行锁合称 next-key lock,每个 next-key lock 是前开后闭区间。也就是说,我们的表 t 初始化以后,如果用 select * from t for update 要把整个表所有记录锁起来,就形成了 7 个 next-key lock,分别是 (-∞,0]、(0,5]、(5,10]、(10,15]、(15,20]、(20, 25]、(25, +supremum]。
备注:这篇文章中,如果没有特别说明,我们把间隙锁记为开区间,把 next-key lock 记为前开后闭区间。
你可能会问说,这个 supremum 从哪儿来的呢?
这是因为 +∞是开区间。实现上,InnoDB 给每个索引加了一个不存在的最大值 supremum,这样才符合我们前面说的“都是前开后闭区间”。
间隙锁和 next-key lock 的引入,帮我们解决了幻读的问题,但同时也带来了一些“困扰”。
对应到我们这个例子的表来说,业务逻辑这样的:任意锁住一行,如果这一行不存在的话就插入,如果存在这一行就更新它的数据,代码如下:
1 2 3 4 5 6 7 8 9 begin; select * from t where id=N for update; /* 如果行不存在 */ insert into t values(N,N,N); /* 如果行存在 */ update t set d=N set id=N; commit;
这个逻辑一旦有并发,就会碰到死锁。你一定也觉得奇怪,这个逻辑每次操作前用 for update 锁起来,已经是最严格的模式了,怎么还会有死锁呢?
这里,我用两个 session 来模拟并发,并假设 N=9。
图 8 间隙锁导致的死锁
你看到了,其实都不需要用到后面的 update 语句,就已经形成死锁了。我们按语句执行顺序来分析一下:
session A 执行 select … for update 语句,由于 id = 9
这一行并不存在,因此会加上间隙锁 (5,10);
session B 执行 select … for update 语句,同样会加上间隙锁 (5,10),间隙锁之间不会冲突,因此这个语句可以执行成功;
session B 试图插入一行 (9,9,9),被 session A 的间隙锁挡住了,只好进入等待;
session A 试图插入一行 (9,9,9),被 session B 的间隙锁挡住了。
至此,两个 session 进入互相等待状态,形成死锁。当然,InnoDB 的死锁检测马上就发现了这对死锁关系,让 session A 的 insert 语句报错返回了。
你现在知道了,间隙锁的引入,可能会导致同样的语句锁住更大的范围,这其实是影响了并发度的 。
你可能会说,为了解决幻读的问题,我们引入了这么一大串内容,有没有更简单一点的处理方法呢。
我在文章一开始就说过,如果没有特别说明,今天和你分析的问题都是在可重复读隔离级别下的,间隙锁是在可重复读隔离级别下才会生效的。所以,你如果把隔离级别设置为读提交的话,就没有间隙锁了。但同时,你要解决可能出现的数据和日志不一致问题,需要把 binlog 格式设置为 row。这,也是现在不少公司使用的配置组合。