LeetCode二叉树基础算法

LeetCode二叉树基础算法

树的高度

104. Maximum Depth of Binary Tree (Easy)

递归计算二叉树左右两边深度,取最大值。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

/**

* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int maxDepth(TreeNode root) {
if (root == null) return 0;
int left = maxDepth(root.left);
int right = maxDepth(root.right);
return Math.max(left, right) + 1;
}
}

平衡树

110. Balanced Binary Tree (Easy)

递归遍历二叉树左右子树深度

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {

private boolean balance = true;

public boolean isBalanced(TreeNode root) {
visitTree(root);
return balance;
}

private int visitTree(TreeNode root) {
if (root == null) return 0;
int left = visitTree(root.left);
int right = visitTree(root.right);
if (Math.abs(left - right) > 1 ) this.balance = false;
return Math.max(left, right) + 1;
}
}

两节点的最长路径

543. Diameter of Binary Tree (Easy)

递归遍历二叉树左右子树深度, 路径就是两边子树深度之和

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {

private int max;

public int diameterOfBinaryTree(TreeNode root) {
deep(root);
return max;
}

private int deep(TreeNode root) {
if (root == null) return 0;
int left = deep(root.left);
int right = deep(root.right);
max = Math.max(max,left+right);
return Math.max(left, right) + 1;
}
}

翻转树

226. Invert Binary Tree (Easy)

递归交换左右子树的引用

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode invertTree(TreeNode root) {
if (root == null) return root;
TreeNode right =root.right;
root.right = invertTree(root.left);
root.left = invertTree(right);
return root;
}
}

归并两棵树

617. Merge Two Binary Trees (Easy)

递归时如果其中一个节点是空,可以直接复用该节点。如果新建节点,需要拷贝节点的左右子树引用,递归时会用到。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode mergeTrees(TreeNode t1, TreeNode t2) {
if (t1 == null && t2 == null ) return null;
if (t1 == null) return t2;
if (t2 == null) return t1;
TreeNode root = new TreeNode(t1.val + t2.val);
root.left = mergeTrees(t1.left, t2.left);
root.right = mergeTrees(t1.right, t2.right);
return root;
}
}

判断路径和是否等于一个数

Leetcode : 112. Path Sum (Easy)

递归查询子树和是否等于目标和

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean hasPathSum(TreeNode root, int sum) {
if (root == null) return false;
if (root.val == sum && root.left == null && root.right == null) return true;
return hasPathSum(root.left, sum - root.val) || hasPathSum(root.right, sum - root.val);
}
}

统计路径和等于一个数的路径数量

437. Path Sum III (Easy)

双层递归

  1. 以当前节点为起点统计路径和
  2. 当前节点以下节点为起点统计路径和

以root为根节点的路径数量= 以root为起点统计路径和+root左节点为起点统计路径和+root右节点为起点统计路径和

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int pathSum(TreeNode root, int sum) {
if (root == null) return 0;
//结果数 等于 以当前root为父节点和 root以下为父节点结果数之和
return sum(root, sum) + pathSum(root.left, sum) + pathSum(root.right, sum);
}
// 计算以当前node为父节点能都多少路径数
private int sum(TreeNode node, int sum) {
if (node == null) return 0;
int count = 0;
if (node.val == sum) count++;
count += sum(node.left, sum - node.val) + sum(node.right, sum - node.val);
return count;
}
}

子树

572. Subtree of Another Tree (Easy)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isSubtree(TreeNode s, TreeNode t) {
if (s == null) return false;
return isSubRoot(s, t) || isSubtree(s.left, t) || isSubtree(s.right, t);
}

public boolean isSubRoot(TreeNode node, TreeNode t) {
if (node == null && t == null) return true;
if (node == null || t == null) return false;
if (node.val != t.val) return false;
return isSubRoot(node.left, t.left) && isSubRoot(node.right, t.right);
}
}

树的对称

101. Symmetric Tree (Easy)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isSymmetric(TreeNode root) {
if (root == null) return true;
return isSymmetric(root.left, root.right);
}

public boolean isSymmetric(TreeNode left, TreeNode right) {
if (left == null && right == null) return true;
if (left == null || right == null) return false;
if (left.val != right.val) return false;
return isSymmetric(left.left, right.right) && isSymmetric(left.right, right.left);
}
}

最小路径

111. Minimum Depth of Binary Tree (Easy)

和最大路径类似

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int minDepth(TreeNode root) {
if (root == null) return 0;
int left = minDepth(root.left);
int right = minDepth(root.right);
if (left == 0 || right == 0) return left + right + 1;
return Math.min(left, right) + 1;
}
}

统计左叶子节点的和

404. Sum of Left Leaves (Easy)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {

public int sumOfLeftLeaves(TreeNode root) {
if (root == null) return 0;
if (root.left != null && root.left.left == null && root.left.right == null) return root.left.val + sumOfLeftLeaves(root.right);
return sumOfLeftLeaves(root.left) + sumOfLeftLeaves(root.right);
}
}
````

#### 相同节点值的最大路径长度

[687. Longest Univalue Path (Easy)](https://leetcode.com/problems/longest-univalue-path/)

递归查找左右子树相同节点值最大路径,最大路径的计算:如果相等路径+1,如果不相等置为0

```java
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
private int path = 0;

public int longestUnivaluePath(TreeNode root) {
visit(root);
return path;
}

private int visit(TreeNode root) {
if (root == null) return 0;
int left = visit(root.left);
int right = visit(root.right);

left = (root.left != null && root.val == root.left.val) ? left + 1 : 0;
right = (root.right != null && root.val == root.right.val)? right + 1 : 0;
path = Math.max(path, left+right);
return Math.max(left, right );
}
}

间隔遍历

337. House Robber III (Medium)

递归查询两种情况

  1. 如果从当前节点开始
  2. 从当前节点的子节点开始
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int rob(TreeNode root) {
if (root == null) return 0;
int val1 = root.val, val2 = 0;
if (root.left != null) val1+= rob(root.left.left) + rob(root.left.right);
if (root.right != null) val1+= rob(root.right.left) + rob(root.right.right);

val2 = rob(root.left) + rob(root.right);
return Math.max(val1, val2);
}
}

找出二叉树中第二小的节点

Second Minimum Node In a Binary Tree (Easy)

第二小节点在子树节点上,如果子树值与根节点相等,继续向下查找

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public int findSecondMinimumValue(TreeNode root) {
if (root == null) return -1;
if (root.left == null) return -1;
int left = root.left.val, right = root.right.val;
if (root.val == root.left.val) left = findSecondMinimumValue(root.left);
if (root.val == root.right.val) right = findSecondMinimumValue(root.right);
if (left != -1 && right != -1) return Math.min(left, right);
if (left > -1) return left;
return right;
}
}

二叉树的层平均值

637. Average of Levels in Binary Tree (Easy)

BFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<Double> averageOfLevels(TreeNode root) {
List<Double> ret = new ArrayList<>();
if (root == null) return ret;
Queue<TreeNode> queue = new LinkedList<>();
queue.add(root);
while(!queue.isEmpty()) {
int count = queue.size();
double sum = 0d;

for(int i = 0; i < count; i++) {
TreeNode node = queue.poll();
sum+= node.val;
if (node.left != null) queue.add(node.left);
if (node.right != null) queue.add(node.right);
}
ret.add(sum/count);
}
return ret;
}
}

找树左下角的值

513. Find Bottom Left Tree Value (Easy)

DFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
private int val = 0;

public int findBottomLeftValue(TreeNode root) {
if (root == null) return val;
Queue<TreeNode> queue = new LinkedList<>();
queue.add(root);
while(!queue.isEmpty()) {
// 这一行的数量
int count = queue.size();

for (int i = 0; i < count; i++) {
TreeNode node = queue.poll();
if(i == 0) val = node.val;
if (node.left != null) queue.add(node.left);
if (node.right != null) queue.add(node.right);
}
}
return val;
}
}

非递归实现二叉树的后序遍历

入栈条件: 未访问过该节点
出栈条件: 访问过该节点

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {

private List<Integer> res = new LinkedList<>();
private Stack<TreeNode> stack = new Stack<>();
private Set<TreeNode> visited = new HashSet<>();

public List<Integer> postorderTraversal(TreeNode root) {
if (root == null) return res;
stack.push(root);

while (!stack.isEmpty()) {
TreeNode node = stack.peek();

if ((node.left == null && node.right == null) || visited.contains(node)) {
TreeNode i = stack.pop();
res.add(i.val);
} else {
visited.add(node);
if (node.right != null)
stack.push(node.right);
if (node.left != null)
stack.push(node.left);
}
}
return res;
}

private void visit(TreeNode root) {
if(root == null) return;
visit(root.left);
visit(root.right);
res.add(root.val);
}
}

非递归实现二叉树的前序遍历

入栈条件: 无
出栈条件: 直接出栈

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
private List<Integer> res = new LinkedList<>();
private Stack<TreeNode> stack = new Stack<>();

public List<Integer> preorderTraversal(TreeNode root) {
if (root == null) return res;
stack.push(root);

while (!stack.isEmpty()) {
TreeNode node = stack.pop();
res.add(node.val);
if (node.right != null) stack.push(node.right);
if (node.left != null) stack.push(node.left);
}
return res;
}
}

非递归实现二叉树的中序遍历

入栈条件: 未访问过该节点
出栈条件: 访问过该节点
入栈顺序: right -> middle -> left

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
private List<Integer> res = new LinkedList<>();
private Stack<TreeNode> stack = new Stack<>();
private Set<TreeNode> visited = new HashSet<>();

public List<Integer> inorderTraversal(TreeNode root) {
if (root == null) return res;
push(root);

while (!stack.isEmpty()) {
TreeNode node = stack.pop();
if ((node.left == null && node.right == null) || visited.contains(node)) {
res.add(node.val);
} else {
push(node);
}
}
return res;
}

private void push(TreeNode root) {
if (root == null) return;
visited.add(root);
if (root.right != null) stack.push(root.right);
stack.push(root);
if (root.left != null) stack.push(root.left);
}
}
LeetCode 二叉树排序树基础算法

LeetCode 二叉树排序树基础算法

修剪二叉搜索树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode trimBST(TreeNode root, int L, int R) {
if (root == null) return null;
if (root.val < L) return trimBST(root.right, L, R);
if (root.val > R) return trimBST(root.left, L, R);
root.left = trimBST(root.left, L, R);
root.right = trimBST(root.right, L, R);
return root;
}
}

二叉搜索树中第K小的元素

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
private int cnt;
private int val;

public int kthSmallest(TreeNode root, int k) {
search(root, k);
return val;

}

private void search(TreeNode root, int k) {
if (root == null) return;
//
kthSmallest(root.left, k);
cnt++;
if (cnt == k) {
val = root.val;
return;
}
kthSmallest(root.right, k);
}
}

把二叉搜索树转换为累加树

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {

private int sum;

public TreeNode convertBST(TreeNode root) {
// 中序遍历 但是是从右往左遍历
//
visit(root);
return root;
}


private void visit(TreeNode root) {
if (root == null) return;

visit(root.right);
sum += root.val;

root.val = sum;

visit(root.left);
}
}

二叉搜索树的最近公共祖先

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
// 公共祖先在左边
if (root.val > p.val && root.val > q.val) return lowestCommonAncestor(root.left, p, q);
// 公共祖先在右边
if (root.val < p.val && root.val < q.val) return lowestCommonAncestor(root.right, p, q);
// 公共祖先在这
return root;
}
}

二叉树的最近公共祖先

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if (root == null || p == root || q == root) return root;
TreeNode left = lowestCommonAncestor(root.left, p, q);
TreeNode right = lowestCommonAncestor(root.right, p, q);

// 左右都是父节点, 上一级就是公共父节点
if(left != null && right != null) return root;
if (left == null && right == null) return null;
if (left != null) return left;
return right;
}
}

将有序数组转换为二叉搜索树

二叉树中序遍历

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode sortedArrayToBST(int[] nums) {
return build(nums, 0, nums.length -1);
}


private TreeNode build(int[] nums, int start, int end) {

if(start> end) return null;

TreeNode node = new TreeNode(nums[(start+end)/2]);

node.left = build(nums, start, (start+end)/2 -1);
node.right = build(nums, (start+end)/2+1, end);
return node;
}
}

有序链表转换二叉搜索树

链表转数组

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode sortedListToBST(ListNode head) {
List<Integer> list = new LinkedList();
ListNode now = head;
while (now != null) {
list.add(now.val);
now = now.next;
}

return build(list, 0, list.size() - 1);
}


private TreeNode build(List<Integer> nums, int start, int end) {

if(start> end) return null;

TreeNode node = new TreeNode(nums.get((start+end)/2));

node.left = build(nums, start, (start+end)/2 -1);
node.right = build(nums, (start+end)/2+1, end);
return node;
}
}

还可以使用双指针找到链表中间节点,缺点是重复遍历节点

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode sortedListToBST(ListNode head) {
// List<Integer> list = new LinkedList();
// ListNode now = head;
// while (now != null) {
// list.add(now.val);
// now = now.next;
// }

// return build(list, 0, list.size() - 1);

return sortedListToBST(head, null);



}

private TreeNode sortedListToBST(ListNode head, ListNode tail) {
if (head == tail) return null;

ListNode mid = head, end = head;
while (end != tail && end.next != tail) {
mid = mid.next;
end = end.next.next;
}

TreeNode root = new TreeNode(mid.val);
root.right = sortedListToBST(mid.next, tail);
root.left = sortedListToBST(head, mid);
return root;
}


private TreeNode build(List<Integer> nums, int start, int end) {

if(start> end) return null;

TreeNode node = new TreeNode(nums.get((start+end)/2));

node.left = build(nums, start, (start+end)/2 -1);
node.right = build(nums, (start+end)/2+1, end);
return node;
}

}

两数之和 IV - 输入 BST

自己写两次遍历搜索二叉树,注意要排除自身节点

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
private boolean res;
private TreeNode r;
private TreeNode current;


public boolean findTarget(TreeNode root, int k) {
r = root;
visit(root, k);
return res;
}

private void visit(TreeNode root, int val) {
if (root == null) return;
visit(root.left, val);
current = root;
if (find(r, val - root.val)) {res = true; return;}
visit(root.right, val);
}

private boolean find(TreeNode root, int value) {
if (root == null) return false;
if (root == current) return false;
if (root.val == value ) return true;
return (value > root.val) ? find(root.right, value): find(root.left, value);
}
}

正经思路, 中序遍历转化为排序数组, 使用双指针查找

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {

private List<Integer> res = new ArrayList<>(64);

public boolean findTarget(TreeNode root, int k) {

visitTree(root);

int low = 0, high = res.size() - 1;
while (low < high) {
int sum = res.get(low) + res.get(high);
if (sum == k) return true;
if (sum < k) low++;
else high--;
}
return false;

}



private void visitTree(TreeNode root) {
if (root == null) return;
visitTree(root.left);
res.add(root.val);
visitTree(root.right);
}

}