奇怪的知识又增加了- BLNJ导致索引有序性失效

奇怪的知识又增加了- BLNJ导致索引有序性失效

先来看表结构:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
CREATE TABLE a (
`id`bigint AUTO_INCREMENT ,
`a` int,
`b` int,
PRIMARY KEY (`id`),
KEY `idx_a_b` (`a`,`b`)
);

CREATE TABLE b (
`id`bigint AUTO_INCREMENT ,
`b` int,
`c` int,
PRIMARY KEY (`id`)
)

看一下join语句,因为b上没有索引,所以mysql用的BLNJ:

1
2
3
4
explain select * from a 
join b using(b)
where a = 1
order by a, b;
id select_type table partitions type possible_keys key key_len ref rows filtered extra
1 SIMPLE a null ref idx_a_b idx_a_b 4 const 5206 100.00 Using temporary; Using filesort
1 SIMPLE b null ALL null null null Null 1000 100.00 Using where; Using join buffer (Block Nested Loop)

如果b表有索引的话:

1
2
3
4
5
6
7
CREATE TABLE b (
`id`bigint AUTO_INCREMENT ,
`b` int,
`c` int,
PRIMARY KEY (`id`),
KEY `idx_b` (`b`)
)
id select_type table partitions type possible_keys key key_len ref rows filtered extra
1 SIMPLE a null ref idx_a_b idx_a_b 8 Const 5206 100.00 Using index condition
1 SIMPLE b null Ref idx_b Idx_b 4 b.b 50 100.00 null

可以发现a表idx_a_b有序性没有利用上,至于原因,先看一下BNLJ执行的流程图:

BNLJ.jpeg

执行过程为:

  1. 扫描表 t1,顺序读取数据行放入 join_buffer 中,直到 join_buffer 满了,继续第 2 步;
  2. 扫描表 t2,把 t2 中的每一行取出来,跟 join_buffer 中的数据做对比,满足 join 条件的,作为结果集的一部分返回;
  3. 清空 join_buffer;
  4. 继续扫描表 t1,顺序读取之后数据放入 join_buffer 中,继续执行第 2 步,直到所有数据读取完毕。

其中隐含的问题在于第二步:即使t1表的数据是有序读取到join_buffer中的,由于是先扫描t2表再关联join_buffer数据,导致join_buffer中的有序性失效。

如果表b有索引idx_b,那么使用BKA算法第二步的关联顺序与BNLJ相反,是先扫描join_buffer后通过索引关联t2,则可以利用join_buffer中的有序数据。

为什么引入间隙锁

为什么引入间隙锁

为了便于说明问题,我们先使用一个小一点儿的表,建表和初始化语句如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
CREATE TABLE `t` (
`id` int(11) NOT NULL,
`c` int(11) DEFAULT NULL,
`d` int(11) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `c` (`c`)
) ENGINE=InnoDB;

insert into t values
(0,0,0),
(5,5,5),
(10,10,10),
(15,15,15),
(20,20,20),
(25,25,25);

这个表除了主键 id 外,还有一个索引 c,初始化语句在表中插入了 6 行数据。

下面的语句序列,是怎么加锁的,加的锁又是什么时候释放的呢?

1
select * from t where d = 5 for update;

比较好理解的是,这个语句会命中 d = 5 的这一行,对应的主键 id = 5,因此在 select 语句执行完成后,会在id = 5 这一行主键上加一个写锁,而且由于两阶段锁协议,这个写锁会在执行 commit 语句的时候释放。

由于字段 d 上没有索引,因此这条查询语句会做全表扫描。那么,其他被扫描到的,但是不满足条件的 5 行记录上,会不会被加锁呢?

我们知道,InnoDB 的默认事务隔离级别是可重复读,所以本文接下来没有特殊说明的部分,都是设定在可重复读隔离级别下。

幻读是什么?

现在,我们就来分析一下,假设只在 id = 5 这一行加锁,而其他行的不加锁的话,会怎么样。

下面先来看一下这个场景(这个结果是建立在前面假设之上,实际上是错误的):

img

假设只在 id = 5 这一行加行锁,可以看到,session A 里执行了三次查询,分别是 Q1、Q2 和 Q3。它们的 SQL 语句相同,都是 select * fom t where d=5 for update。我们来看一下这三条 SQL 语句,分别会返回什么结果。

  1. Q1 只返回 id = 5 这一行;
  2. 在 T2 时刻,session B 把 id = 0 这一行的 d 值改成了 5,因此 T3 时刻 Q2 查出来的是 id = 0 id = 5 这两行;
  3. 在 T4 时刻,session C 又插入一行(1,1,5),因此 T5 时刻 Q3 查出来的是 id = 0id = 1id = 5 的这三行。

其中,Q3 读到 id = 1 这一行的现象,被称为“幻读”。也就是说,幻读指的是一个事务在前后两次查询同一个范围的时候,后一次查询看到了前一次查询没有看到的行。

这里,我需要对“幻读”做一个说明:

  1. 在可重复读隔离级别下,普通的查询是快照读,是不会看到别的事务插入的数据的。因此,幻读在当前读下才会出现。
  2. 上面 session B 的修改结果,被 session A 之后的 select 语句用当前读看到,不能称为幻读。幻读仅专指新插入的行。

如果只从我们学到的事务可见性规则来分析的话,上面这三条 SQL 语句的返回结果都没有问题。

因为这三个查询都是加了 for update,都是当前读。而当前读的规则,就是要能读到所有已经提交的记录的最新值。并且,session B 和 sessionC 的两条语句,执行后就会提交,所以 Q2 和 Q3 就是应该看到这两个事务的操作效果,而且也看到了,这跟事务的可见性规则并不矛盾。

幻读有什么问题?

首先是语义上的。session A 在 T1 时刻就声明了,“我要把所有 d=5 的行锁住,不准别的事务进行读写操作”。所以我们假设只锁了id = 5这一行的语义与select * from t where d = 5 for update 不同。

其次,是数据一致性的问题。 这个数据不一致到底是怎么引入的?肯定是前面的假设有问题。

我们把扫描过程中碰到的行,也都加上写锁,再来看看执行效果。

img

由于 session A 把所有的行都加了写锁,所以 session B 在执行第一个 update 语句的时候就被锁住了。需要等到 T6 时刻 session A 提交以后,session B 才能继续执行。

这样对于 id = 0 这一行,在数据库里的最终结果还是 (0,5,5)。在 binlog 里面,执行序列是这样的:

1
2
3
4
5
6
7
insert into t values(1,1,5); /*(1,1,5)*/
update t set c=5 where id=1; /*(1,5,5)*/

update t set d=100 where d=5;/* 所有 d=5 的行,d 改成 100*/

update t set d=5 where id=0; /*(0,0,5)*/
update t set c=5 where id=0; /*(0,5,5)*/

可以看到,按照日志顺序执行,id = 0 这一行的最终结果也是 (0,5,5)。所以,id = 0 这一行的问题解决了。

但同时你也可以看到,id = 1 这一行,在数据库里面的结果是 (1,5,5),而根据 binlog 的执行结果是 (1,5,100),也就是说幻读的问题还是没有解决。为什么我们已经这么“凶残”地,把所有的记录都上了锁,还是阻止不了 id = 1 这一行的插入和更新呢?

原因很简单。在 T3 时刻,我们给所有行加锁的时候,id = 1 这一行还不存在,不存在也就加不上锁。

也就是说,即使把所有的记录都加上锁,还是阻止不了新插入的记录,这也是为什么“幻读”会被单独拿出来解决的原因。

如何解决幻读?

现在你知道了,产生幻读的原因是,行锁只能锁住行,但是新插入记录这个动作,要更新的是记录之间的“间隙”。因此,为了解决幻读问题,InnoDB 只好引入新的锁,也就是间隙锁 (Gap Lock)。

顾名思义,间隙锁,锁的就是两个值之间的空隙。比如文章开头的表 t,初始化插入了 6 个记录,这就产生了 7 个间隙。

img

这样,当你执行 select * from t where d=5 for update 的时候,就不止是给数据库中已有的 6 个记录加上了行锁,还同时加了 7 个间隙锁。这样就确保了无法再插入新的记录。

也就是说这时候,在一行行扫描的过程中,不仅将给行加上了行锁,还给行两边的空隙,也加上了间隙锁。

现在你知道了,数据行是可以加上锁的实体,数据行之间的间隙,也是可以加上锁的实体。但是间隙锁跟我们之前碰到过的锁都不太一样。

比如行锁,分成读锁和写锁。下图就是这两种类型行锁的冲突关系。

img

也就是说,跟行锁有冲突关系的是“另外一个行锁”。

但是间隙锁不一样,跟间隙锁存在冲突关系的,是“往这个间隙中插入一个记录”这个操作。间隙锁之间都不存在冲突关系。

这句话不太好理解,我给你举个例子:

img

这里 session B 并不会被堵住。因为表 t 里并没有 c = 7 这个记录,因此 session A 加的是间隙锁 (5,10)。而 session B 也是在这个间隙加的间隙锁。它们有共同的目标,即:保护这个间隙,不允许插入值。但,它们之间是不冲突的。

间隙锁和行锁合称 next-key lock,每个 next-key lock 是前开后闭区间。也就是说,我们的表 t 初始化以后,如果用 select * from t for update 要把整个表所有记录锁起来,就形成了 7 个 next-key lock,分别是 (-∞,0]、(0,5]、(5,10]、(10,15]、(15,20]、(20, 25]、(25, +supremum]。

备注:这篇文章中,如果没有特别说明,我们把间隙锁记为开区间,把 next-key lock 记为前开后闭区间。

你可能会问说,这个 supremum 从哪儿来的呢?

这是因为 +∞是开区间。实现上,InnoDB 给每个索引加了一个不存在的最大值 supremum,这样才符合我们前面说的“都是前开后闭区间”。

间隙锁和 next-key lock 的引入,帮我们解决了幻读的问题,但同时也带来了一些“困扰”。

对应到我们这个例子的表来说,业务逻辑这样的:任意锁住一行,如果这一行不存在的话就插入,如果存在这一行就更新它的数据,代码如下:

1
2
3
4
5
6
7
8
9
begin;
select * from t where id=N for update;

/* 如果行不存在 */
insert into t values(N,N,N);
/* 如果行存在 */
update t set d=N set id=N;

commit;

这个逻辑一旦有并发,就会碰到死锁。你一定也觉得奇怪,这个逻辑每次操作前用 for update 锁起来,已经是最严格的模式了,怎么还会有死锁呢?

这里,我用两个 session 来模拟并发,并假设 N=9。

img

图 8 间隙锁导致的死锁

你看到了,其实都不需要用到后面的 update 语句,就已经形成死锁了。我们按语句执行顺序来分析一下:

  1. session A 执行 select … for update 语句,由于 id = 9 这一行并不存在,因此会加上间隙锁 (5,10);
  2. session B 执行 select … for update 语句,同样会加上间隙锁 (5,10),间隙锁之间不会冲突,因此这个语句可以执行成功;
  3. session B 试图插入一行 (9,9,9),被 session A 的间隙锁挡住了,只好进入等待;
  4. session A 试图插入一行 (9,9,9),被 session B 的间隙锁挡住了。

至此,两个 session 进入互相等待状态,形成死锁。当然,InnoDB 的死锁检测马上就发现了这对死锁关系,让 session A 的 insert 语句报错返回了。

你现在知道了,间隙锁的引入,可能会导致同样的语句锁住更大的范围,这其实是影响了并发度的

你可能会说,为了解决幻读的问题,我们引入了这么一大串内容,有没有更简单一点的处理方法呢。

我在文章一开始就说过,如果没有特别说明,今天和你分析的问题都是在可重复读隔离级别下的,间隙锁是在可重复读隔离级别下才会生效的。所以,你如果把隔离级别设置为读提交的话,就没有间隙锁了。但同时,你要解决可能出现的数据和日志不一致问题,需要把 binlog 格式设置为 row。这,也是现在不少公司使用的配置组合。

清醒思考的艺术-checklist

清醒思考的艺术-checklist

  • 幸存者偏差:高估了成功的概率
  • 看清楚自己
  • 是否高估自己
  • 是否陷入从众心理
  • 是否与沉没成本难舍难分
  • 是否是互惠互利陷阱
  • 摆脱确认偏差,不要证明自己是正确的
  • 是否屈服于权威
  • 是否依据对比来判断(请不要怎么做)
  • 现成偏见
  • 是否故意营造一种危机气氛
  • 明确判断他人的能力范围
  • 警惕控制错觉
  • 警惕激励过敏
  • 是否是平均值会起作用?
  • 警惕公地悲剧
  • 切勿只以结果判断决定
  • 面对选择,遵守自己的标准
  • 排除对他人好感的影响
  • 禀赋效应 let it go
  • 无巧不成书,如果从不发生才令人感到意外
  • 唱反调的人也许是最重要的人
  • 0风险偏误
  • 稀有性谬论
  • 概率偏误-前车之鉴后事之师
  • 独立事件-赌徒谬论
  • 锚定效应,你的锚在哪里?
  • 警惕归纳法,警惕黑天鹅事件
  • 厌恶风险,但不要无视损失
  • 社会性懈怠
  • 赢家诅咒-你会得到什么、失去什么
  • 是否高估了人的影响
  • 相互关系不等同于因果关系
  • 避免光环效应过度影响总体印象
  • 合理不一定真实
  • 不要被框架效应限制注意力
  • 遇到不明情况,就会发生行动偏误
  • 不作为偏误,如果不解决问题,你就是问题的一部分
  • 自利偏误,为什么你从来不自责
  • 避免长时间负面影响
  • 自我选择偏误
  • 联想偏误,不要欠拟合也不要过拟合
  • 认知失调,是否在自我安慰
  • 即使行乐,只限周末,不要为了眼前的利益破坏未来的利益
Your browser is out-of-date!

Update your browser to view this website correctly.&npsb;Update my browser now

×