消息队列(一)-如何解决消息丢失

消息队列(一)-如何解决消息丢失

消息会丢失的环节

消息从被写入到消息队列,到被消费者消费完成,这个链路上会有哪些地方存在丢失消息的可能呢?其实,主要存在三个场景:

  • 消息从生产者写入到消息队列的过程。

  • 消息在消息队列中的存储场景。

  • 消息被消费者消费的过程。

lost1.jpg

1. 在消息生产的过程中丢失消息

消息的生产者一般是我们的业务服务器,消息队列是独立部署在单独的服务器上的。两者之间的网络虽然是内网,但是也会存在抖动的可能,而一旦发生抖动,消息就有可能因为网络的错误而丢失。

针对这种情况,我建议你采用的方案是消息重传:也就是当你发现发送超时后你就将消息重新发一次,但是你也不能无限制地重传消息。一般来说,如果不是消息队列发生故障,或者是到消息队列的网络断开了,重试 2~3 次就可以了。

不过,这种方案可能会造成消息的重复,从而导致在消费的时候会重复消费同样的消息。比方说,消息生产时由于消息队列处理慢或者网络的抖动,导致虽然最终写入消息队列成功,但在生产端却超时了,生产者重传这条消息就会形成重复的消息。

2. 在消息队列中丢失消息

拿 Kafka 举例,消息在 Kafka 中是存储在本地磁盘上的,而为了减少消息存储时对磁盘的随机 I/O,我们一般会将消息先写入到操作系统的 Page Cache 中,然后再找合适的时机刷新到磁盘上。

比如,Kafka 可以配置当达到某一时间间隔,或者累积一定的消息数量的时候再刷盘,也就是所说的异步刷盘。

不过,如果发生机器掉电或者机器异常重启,那么 Page Cache 中还没有来得及刷盘的消息就会丢失了。那么怎么解决呢?

你可能会把刷盘的间隔设置很短,或者设置累积一条消息就就刷盘,但这样频繁刷盘会对性能有比较大的影响,而且从经验来看,出现机器宕机或者掉电的几率也不高,所以我不建议你这样做。

loss2.jpg

如果你的系统对消息丢失的容忍度很低,那么你可以考虑以集群方式部署 Kafka 服务,通过部署多个副本备份数据,保证消息尽量不丢失。

那么它是怎么实现的呢?

Kafka 集群中有一个 Leader 负责消息的写入和消费,可以有多个 Follower 负责数据的备份。Follower 中有一个特殊的集合叫做 ISR(in-sync replicas),当 Leader 故障时,新选举出来的 Leader 会从 ISR 中选择,默认 Leader 的数据会异步地复制给 Follower,这样在 Leader 发生掉电或者宕机时,Kafka 会从 Follower 中消费消息,减少消息丢失的可能。

由于默认消息是异步地从 Leader 复制到 Follower 的,所以一旦 Leader 宕机,那些还没有来得及复制到 Follower 的消息还是会丢失。为了解决这个问题,Kafka 为生产者提供一个选项叫做“acks”,当这个选项被设置为“all”时,生产者发送的每一条消息除了发给 Leader 外还会发给所有的 ISR,并且必须得到 Leader 和所有 ISR 的确认后才被认为发送成功。这样,只有 Leader 和所有的 ISR 都挂了,消息才会丢失。

loss3.jpg

从上面这张图来看,当设置“acks=all”时,需要同步执行 1,3,4 三个步骤,对于消息生产的性能来说也是有比较大的影响的,所以你在实际应用中需要仔细地权衡考量。我给你的建议是:

  1. 如果你需要确保消息一条都不能丢失,那么建议不要开启消息队列的同步刷盘,而是需要使用集群的方式来解决,可以配置当所有 ISR Follower 都接收到消息才返回成功。

  2. 如果对消息的丢失有一定的容忍度,那么建议不部署集群,即使以集群方式部署,也建议配置只发送给一个 Follower 就可以返回成功了。

  3. 我们的业务系统一般对于消息的丢失有一定的容忍度,比如说以上面的红包系统为例,如果红包消息丢失了,我们只要后续给没有发送红包的用户补发红包就好了。

3. 在消费的过程中存在消息丢失的可能

我还是以 Kafka 为例来说明。一个消费者消费消息的进度是记录在消息队列集群中的,而消费的过程分为三步:接收消息、处理消息、更新消费进度。

这里面接收消息和处理消息的过程都可能会发生异常或者失败,比如说,消息接收时网络发生抖动,导致消息并没有被正确的接收到;处理消息时可能发生一些业务的异常导致处理流程未执行完成,这时如果更新消费进度,那么这条失败的消息就永远不会被处理了,也可以认为是丢失了。

所以,在这里你需要注意的是,一定要等到消息接收和处理完成后才能更新消费进度,但是这也会造成消息重复的问题,比方说某一条消息在处理之后,消费者恰好宕机了,那么因为没有更新消费进度,所以当这个消费者重启之后,还会重复地消费这条消息。

4. 最佳实践

  1. 不要使用 producer.send(msg),而要使用 producer.send(msg, callback)。记住,一定要使用带有回调通知的 send 方法。
  2. 设置 acks = all。acks 是 Producer 的一个参数,代表了你对“已提交”消息的定义。如果设置成 all,则表明所有副本 Broker 都要接收到消息,该消息才算是“已提交”。这是最高等级的“已提交”定义。
  3. 设置 retries 为一个较大的值。这里的 retries 同样是 Producer 的参数,对应前面提到的 Producer 自动重试。当出现网络的瞬时抖动时,消息发送可能会失败,此时配置了 retries > 0 的 Producer 能够自动重试消息发送,避免消息丢失。
  4. 设置 unclean.leader.election.enable = false。这是 Broker 端的参数,它控制的是哪些 Broker 有资格竞选分区的 Leader。如果一个 Broker 落后原先的 Leader 太多,那么它一旦成为新的 Leader,必然会造成消息的丢失。故一般都要将该参数设置成 false,即不允许这种情况的发生。
  5. 设置 replication.factor >= 3。这也是 Broker 端的参数。其实这里想表述的是,最好将消息多保存几份,毕竟目前防止消息丢失的主要机制就是冗余。
  6. 设置 min.insync.replicas > 1。这依然是 Broker 端参数,控制的是消息至少要被写入到多少个副本才算是“已提交”。设置成大于 1 可以提升消息持久性。在实际环境中千万不要使用默认值 1。
  7. 确保 replication.factor > min.insync.replicas。如果两者相等,那么只要有一个副本挂机,整个分区就无法正常工作了。我们不仅要改善消息的持久性,防止数据丢失,还要在不降低可用性的基础上完成。推荐设置成 replication.factor = min.insync.replicas + 1。
  8. 确保消息消费完成再提交。Consumer 端有个参数 enable.auto.commit,最好把它设置成 false,并采用手动提交位移的方式。就像前面说的,这对于单 Consumer 多线程处理的场景而言是至关重要的。
缓存专题(五) 如何解决缓存穿透

缓存专题(五) 如何解决缓存穿透

什么是缓存穿透

缓存穿透其实是指从缓存中没有查到数据,而不得不从后端系统(比如数据库)中查询的情况。你可以把数据库比喻为手机,它是经受不了太多的划痕和磕碰的,所以你需要给它贴个膜再套个保护壳,就能对手机起到一定的保护作用了。

不过,少量的缓存穿透不可避免,对系统也是没有损害的,主要有几点原因:

  • 一方面,互联网系统通常会面临极大数据量的考验,而缓存系统在容量上是有限的,不可能存储系统所有的数据,那么在查询未缓存数据的时候就会发生缓存穿透。
  • 另一方面,互联网系统的数据访问模型一般会遵从“80/20 原则”。“80/20 原则”又称为帕累托法则,是意大利经济学家帕累托提出的一个经济学的理论。它是指在一组事物中,最重要的事物通常只占 20%,而剩余的 80% 的事物确实不重要的。把它应用到数据访问的领域,就是我们会经常访问 20% 的热点数据,而另外的 80% 的数据则不会被经常访问。比如你买了很多衣服,很多书,但是其实经常穿的,经常看的,可能也就是其中很小的一部分。

既然缓存的容量有限,并且大部分的访问只会请求 20% 的热点数据,那么理论上说,我们只需要在有限的缓存空间里存储 20% 的热点数据就可以有效地保护脆弱的后端系统了,也就可以放弃缓存另外 80% 的非热点数据了。所以,这种少量的缓存穿透是不可避免的,但是对系统是没有损害的。

那么什么样的缓存穿透对系统有害呢?答案是大量的穿透请求超过了后端系统的承受范围,造成了后端系统的崩溃。如果把少量的请求比作毛毛细雨,那么一旦变成倾盆大雨,引发洪水,冲倒房屋,肯定就不行了。

产生这种大量穿透请求的场景有很多,接下来,我就带你解析这几种场景以及相应的解决方案。

缓存穿透的解决方案

先来考虑这样一种场景:在你的电商系统的用户表中,我们需要通过用户 ID 查询用户的信息,缓存的读写策略采用 Cache Aside 策略。

那么,如果要读取一个用户表中未注册的用户,会发生什么情况呢?按照这个策略,我们会先读缓存,再穿透读数据库。由于用户并不存在,所以缓存和数据库中都没有查询到数据,因此也就不会向缓存中回种数据(也就是向缓存中设置值的意思),这样当再次请求这个用户数据的时候还是会再次穿透到数据库。在这种场景下,缓存并不能有效地阻挡请求穿透到数据库上,它的作用就微乎其微了。

那如何解决缓存穿透呢?一般来说我们会有两种解决方案:回种空值以及使用布隆过滤器。

我们先来看看第一种方案。

回种空值

回顾上面提到的场景,你会发现最大的问题在于数据库中并不存在用户的数据,这就造成无论查询多少次,数据库中永远都不会存在这个用户的数据,穿透永远都会发生。

类似的场景还有一些:比如由于代码的 bug 导致查询数据库的时候抛出了异常,这样可以认为从数据库查询出来的数据为空,同样不会回种缓存。

那么,当我们从数据库中查询到空值或者发生异常时,我们可以向缓存中回种一个空值。但是因为空值并不是准确的业务数据,并且会占用缓存的空间,所以我们会给这个空值加一个比较短的过期时间,让空值在短时间之内能够快速过期淘汰。下面是这个流程的伪代码:

1
2
3
4
5
6
7
8
9
10
11
Object nullValue = new Object();
try {
Object valueFromDB = getFromDB(uid); // 从数据库中查询数据
if (valueFromDB == null) {
cache.set(uid, nullValue, 10); // 如果从数据库中查询到空值,就把空值写入缓存,设置较短的超时时间
} else {
cache.set(uid, valueFromDB, 1000);
}
} catch(Exception e) {
cache.set(uid, nullValue, 10);
}

回种空值虽然能够阻挡大量穿透的请求,但如果有大量获取未注册用户信息的请求,缓存内就会有有大量的空值缓存,也就会浪费缓存的存储空间,如果缓存空间被占满了,还会剔除掉一些已经被缓存的用户信息反而会造成缓存命中率的下降。

所以这个方案,我建议你在使用的时候应该评估一下缓存容量是否能够支撑。如果需要大量的缓存节点来支持,那么就无法通过通过回种空值的方式来解决,这时你可以考虑使用布隆过滤器。

使用布隆过滤器

1970 年布隆提出了一种布隆过滤器的算法,用来判断一个元素是否在一个集合中。这种算法由一个二进制数组和一个 Hash 算法组成。它的基本思路如下:

我们把集合中的每一个值按照提供的 Hash 算法算出对应的 Hash 值,然后将 Hash 值对数组长度取模后得到需要计入数组的索引值,并且将数组这个位置的值从 0 改成 1。在判断一个元素是否存在于这个集合中时,你只需要将这个元素按照相同的算法计算出索引值,如果这个位置的值为 1 就认为这个元素在集合中,否则则认为不在集合中。

下图是布隆过滤器示意图,我来带你分析一下图内的信息。

nullcache1.jpg

A、B、C 等元素组成了一个集合,元素 D 计算出的 Hash 值所对应的的数组中值是 1,所以可以认为 D 也在集合中。而 F 在数组中的值是 0,所以 F 不在数组中。

那么我们如何使用布隆过滤器来解决缓存穿透的问题呢?

还是以存储用户信息的表为例进行讲解。首先,我们初始化一个很大的数组,比方说长度为 20 亿的数组,接下来我们选择一个 Hash 算法,然后我们将目前现有的所有用户的 ID 计算出 Hash 值并且映射到这个大数组中,映射位置的值设置为 1,其它值设置为 0。

新注册的用户除了需要写入到数据库中之外,它也需要依照同样的算法更新布隆过滤器的数组中,相应位置的值。那么当我们需要查询某一个用户的信息时,我们首先查询这个 ID 在布隆过滤器中是否存在,如果不存在就直接返回空值,而不需要继续查询数据库和缓存,这样就可以极大地减少异常查询带来的缓存穿透。

nullcache2.jpg

布隆过滤器拥有极高的性能,无论是写入操作还是读取操作,时间复杂度都是 O(1),是常量值。在空间上,相对于其他数据结构它也有很大的优势,比如,20 亿的数组需要 2000000000/8/1024/1024 = 238M 的空间,而如果使用数组来存储,假设每个用户 ID 占用 4 个字节的空间,那么存储 20 亿用户需要 2000000000 * 4 / 1024 / 1024 = 7600M 的空间,是布隆过滤器的 32 倍。

不过,任何事物都有两面性,布隆过滤器也不例外,它主要有两个缺陷:

  1. 它在判断元素是否在集合中时是有一定错误几率的,比如它会把不是集合中的元素判断为处在集合中;

  2. 不支持删除元素。

关于第一个缺陷,主要是 Hash 算法的问题。因为布隆过滤器是由一个二进制数组和一个 Hash 算法组成的,Hash 算法存在着一定的碰撞几率。Hash 碰撞的含义是不同的输入值经过 Hash 运算后得到了相同的 Hash 结果。

本来,Hash 的含义是不同的输入,依据不同的算法映射成独一无二的固定长度的值,也就是我输入字符串“1”,根据 CRC32 算法,值是 2212294583。但是现实中 Hash 算法的输入值是无限的,输出值的值空间却是固定的,比如 16 位的 Hash 值的值空间是 65535,那么它的碰撞几率就是 1/65535,即如果输入值的个数超过 65535 就一定会发生碰撞。

那么你可能会问为什么不映射成更长的 Hash 值呢?

因为更长的 Hash 值会带来更高的存储成本和计算成本。即使使用 32 位的 Hash 算法,它的值空间长度是 2 的 32 次幂减一,约等于 42 亿,用来映射 20 亿的用户数据,碰撞几率依然有接近 50%。

Hash 的碰撞就造成了两个用户 ID ,A 和 B 会计算出相同的 Hash 值,那么如果 A 是注册的用户,它的 Hash 值对应的数组中的值是 1,那么 B 即使不是注册用户,它在数组中的位置和 A 是相同的,对应的值也是 1,这就产生了误判。

布隆过滤器的误判有一个特点,就是它只会出现“false positive”的情况。这是什么意思呢?当布隆过滤器判断元素在集合中时,这个元素可能不在集合中。但是一旦布隆过滤器判断这个元素不在集合中时,它一定不在集合中。这一点非常适合解决缓存穿透的问题。为什么呢?

你想,如果布隆过滤器会将集合中的元素判定为不在集合中,那么我们就不确定,被布隆过滤器判定为不在集合中的元素,是不是在集合中。假设在刚才的场景中,如果有大量查询未注册的用户信息的请求存在,那么这些请求到达布隆过滤器之后,即使布隆过滤器判断为不是注册用户,那么我们也不确定它是不是真的不是注册用户,那么就还是需要去数据库和缓存中查询,这就使布隆过滤器失去了价值。

所以你看,布隆过滤器虽然存在误判的情况,但是还是会减少缓存穿透的情况发生,只是我们需要尽量减少误判的几率,这样布隆过滤器的判断正确的几率更高,对缓存的穿透也更少。一个解决方案是:

使用多个 Hash 算法为元素计算出多个 Hash 值,只有所有 Hash 值对应的数组中的值都为 1 时,才会认为这个元素在集合中。

布隆过滤器不支持删除元素的缺陷也和 Hash 碰撞有关。给你举一个例子,假如两个元素 A 和 B 都是集合中的元素,它们有相同的 Hash 值,它们就会映射到数组的同一个位置。这时我们删除了 A,数组中对应位置的值也从 1 变成 0,那么在判断 B 的时候发现值是 0,也会判断 B 是不在集合中的元素,就会得到错误的结论。

那么我是怎么解决这个问题的呢?我会让数组中不再只有 0 和 1 两个值,而是存储一个计数。比如如果 A 和 B 同时命中了一个数组的索引,那么这个位置的值就是 2,如果 A 被删除了就把这个值从 2 改为 1。这个方案中的数组不再存储 bit 位,而是存储数值,也就会增加空间的消耗。所以,你要依据业务场景来选择是否能够使用布隆过滤器,比如像是注册用户的场景下,因为用户删除的情况基本不存在,所以还是可以使用布隆过滤器来解决缓存穿透的问题的。

讲了这么多,关于布隆过滤器的使用上,我也给你几个建议:

  1. 选择多个 Hash 函数计算多个 Hash 值,这样可以减少误判的几率;

  2. 布隆过滤器会消耗一定的内存空间,所以在使用时需要评估你的业务场景下需要多大的内存,存储的成本是否可以接受。

总的来说,回种空值和布隆过滤器是解决缓存穿透问题的两种最主要的解决方案,但是它们也有各自的适用场景,并不能解决所有问题。比方说当有一个极热点的缓存项,它一旦失效会有大量请求穿透到数据库,这会对数据库造成瞬时极大的压力,我们把这个场景叫做“dog-pile effect”(狗桩效应),

这是典型的缓存并发穿透的问题,那么,我们如何来解决这个问题呢?解决狗桩效应的思路是尽量地减少缓存穿透后的并发,方案也比较简单:

  1. 在代码中,控制在某一个热点缓存项失效之后启动一个后台线程,穿透到数据库,将数据加载到缓存中,在缓存未加载之前,所有访问这个缓存的请求都不再穿透而直接返回。

  2. 通过在 Memcached 或者 Redis 中设置分布式锁,只有获取到锁的请求才能够穿透到数据库。

分布式锁的方式也比较简单,比方说 ID 为 1 的用户是一个热点用户,当他的用户信息缓存失效后,我们需要从数据库中重新加载数据时,先向 Memcached 中写入一个 Key 为”lock.1”的缓存项,然后去数据库里面加载数据,当数据加载完成后再把这个 Key 删掉。这时,如果另外一个线程也要请求这个用户的数据,它发现缓存中有 Key 为“lock.1”的缓存,就认为目前已经有线程在加载数据库中的值到缓存中了,它就可以重新去缓存中查询数据,不再穿透数据库了。

缓存专题(四) 分布式缓存高可用

缓存专题(四) 分布式缓存高可用

分布式缓存的高可用方案主要选择的方案有客户端方案、中间代理层方案和服务端方案三大类:

  • 客户端方案就是在客户端配置多个缓存的节点,通过缓存写入和读取算法策略来实现分布式,从而提高缓存的可用性。
  • 中间代理层方案是在应用代码和缓存节点之间增加代理层,客户端所有的写入和读取的请求都通过代理层,而代理层中会内置高可用策略,帮助提升缓存系统的高可用。
  • 服务端方案就是 Redis 2.4 版本后提出的 Redis Sentinel 方案。

掌握这些方案可以帮助你,抵御部分缓存节点故障导致的,缓存命中率下降的影响,增强你的系统的鲁棒性。

客户端方案

在客户端方案中,你需要关注缓存的写和读两个方面:

  • 写入数据时,需要把被写入缓存的数据分散到多个节点中,即进行数据分片;
  • 读数据时,可以利用多组的缓存来做容错,提升缓存系统的可用性。关于读数据,这里可以使用主从和多副本两种策略,两种策略是为了解决不同的问题而提出的。

下面我就带你一起详细地看一下到底要怎么做。

1. 缓存数据如何分片

单一的缓存节点受到机器内存、网卡带宽和单节点请求量的限制,不能承担比较高的并发,因此我们考虑将数据分片,依照分片算法将数据打散到多个不同的节点上,每个节点上存储部分数据。

这样在某个节点故障的情况下,其他节点也可以提供服务,保证了一定的可用性。这就好比不要把鸡蛋放在同一个篮子里,这样一旦一个篮子掉在地上,摔碎了,别的篮子里还有没摔碎的鸡蛋,不至于一个不剩。

一般来讲,分片算法常见的就是 Hash 分片算法和一致性 Hash 分片算法两种。

Hash 分片的算法就是对缓存的 Key 做哈希计算,然后对总的缓存节点个数取余。你可以这么理解:

比如说,我们部署了三个缓存节点组成一个缓存的集群,当有新的数据要写入时,我们先对这个缓存的 Key 做比如 crc32 等 Hash 算法生成 Hash 值,然后对 Hash 值模 3,得出的结果就是要存入缓存节点的序号。

cache1.jpg

这个算法最大的优点就是简单易理解,缺点是当增加或者减少缓存节点时,缓存总的节点个数变化造成计算出来的节点发生变化,从而造成缓存失效不可用。所以我建议你,如果采用这种方法,最好建立在你对于这组缓存命中率下降不敏感,比如下面还有另外一层缓存来兜底的情况下。

当然了,用一致性 Hash 算法可以很好地解决增加和删减节点时,命中率下降的问题。在这个算法中,我们将整个 Hash 值空间组织成一个虚拟的圆环,然后将缓存节点的 IP 地址或者主机名做 Hash 取值后,放置在这个圆环上。当我们需要确定某一个 Key 需要存取到哪个节点上的时候,先对这个 Key 做同样的 Hash 取值,确定在环上的位置,然后按照顺时针方向在环上“行走”,遇到的第一个缓存节点就是要访问的节点。比方说下面这张图里面,Key 1 和 Key 2 会落入到 Node 1 中,Key 3、Key 4 会落入到 Node 2 中,Key 5 落入到 Node 3 中,Key 6 落入到 Node 4 中。

cache2.jpg

这时如果在 Node 1 和 Node 2 之间增加一个 Node 5,你可以看到原本命中 Node 2 的 Key 3 现在命中到 Node 5,而其它的 Key 都没有变化;同样的道理,如果我们把 Node 3 从集群中移除,那么只会影响到 Key 5 。所以你看,在增加和删除节点时,只有少量的 Key 会“漂移”到其它节点上,而大部分的 Key 命中的节点还是会保持不变,从而可以保证命中率不会大幅下降。

cache3.jpg

不过,事物总有两面性。虽然这个算法对命中率的影响比较小,但它还是存在问题:

  • 缓存节点在圆环上分布不平均,会造成部分缓存节点的压力较大;当某个节点故障时,这个节点所要承担的所有访问都会被顺移到另一个节点上,会对后面这个节点造成压力。
  • 一致性 Hash 算法的脏数据问题。

极端情况下,比如一个有三个节点 A、B、C 承担整体的访问,每个节点的访问量平均,A 故障后,B 将承担双倍的压力(A 和 B 的全部请求),当 B 承担不了流量 Crash 后,C 也将因为要承担原先三倍的流量而 Crash,这就造成了整体缓存系统的雪崩。

说到这儿,你可能觉得很可怕,但也不要太担心,我们程序员就是要能够创造性地解决各种问题,所以你可以在一致性 Hash 算法中引入虚拟节点的概念。

它将一个缓存节点计算多个 Hash 值分散到圆环的不同位置,这样既实现了数据的平均,而且当某一个节点故障或者退出的时候,它原先承担的 Key 将以更加平均的方式分配到其他节点上,从而避免雪崩的发生。

其次,就是一致性 Hash 算法的脏数据问题。为什么会产生脏数据呢?比方说,在集群中有两个节点 A 和 B,客户端初始写入一个 Key 为 k,值为 3 的缓存数据到 Cache A 中。这时如果要更新 k 的值为 4,但是缓存 A 恰好和客户端连接出现了问题,那这次写入请求会写入到 Cache B 中。接下来缓存 A 和客户端的连接恢复,当客户端要获取 k 的值时,就会获取到存在 Cache A 中的脏数据 3,而不是 Cache B 中的 4。

所以,在使用一致性 Hash 算法时一定要设置缓存的过期时间,这样当发生漂移时,之前存储的脏数据可能已经过期,就可以减少存在脏数据的几率。

cache4.jpg很显然,数据分片最大的优势就是缓解缓存节点的存储和访问压力,但同时它也让缓存的使用更加复杂。在 MultiGet(批量获取)场景下,单个节点的访问量并没有减少,同时节点数太多会造成缓存访问的 SLA(即“服务等级协议”,SLA 代表了网站服务可用性)得不到很好的保证,因为根据木桶原则,SLA 取决于最慢、最坏的节点的情况,节点数过多也会增加出问题的概率,因此我推荐 4 到 6 个节点为佳。

中间代理层方案

虽然客户端方案已经能解决大部分的问题,但是只能在单一语言系统之间复用。例如微博使用 Java 语言实现了这么一套逻辑,我使用 PHP 就难以复用,需要重新写一套,很麻烦。而中间代理层的方案就可以解决这个问题。你可以将客户端解决方案的经验移植到代理层中,通过通用的协议(如 Redis 协议)来实现在其他语言中的复用。

如果你来自研缓存代理层,你就可以将客户端方案中的高可用逻辑封装在代理层代码里面,这样用户在使用你的代理层的时候就不需要关心缓存的高可用是如何做的,只需要依赖你的代理层就好了。

除此以外,业界也有很多中间代理层方案,比如 Facebook 的Mcrouter,Twitter 的Twemproxy,豌豆荚的Codis。它们的原理基本上可以由一张图来概括:

cache5.jpg

看这张图你有什么发现吗? 所有缓存的读写请求都是经过代理层完成的。代理层是无状态的,主要负责读写请求的路由功能,并且在其中内置了一些高可用的逻辑,不同的开源中间代理层方案中使用的高可用策略各有不同。比如在 Twemproxy 中,Proxy 保证在某一个 Redis 节点挂掉之后会把它从集群中移除,后续的请求将由其他节点来完成;而 Codis 的实现略复杂,它提供了一个叫 Codis Ha 的工具来实现自动从节点提主节点,在 3.2 版本之后换做了 Redis Sentinel 方式,从而实现 Redis 节点的高可用。

服务端方案

Redis 在 2.4 版本中提出了 Redis Sentinel 模式来解决主从 Redis 部署时的高可用问题,它可以在主节点挂了以后自动将从节点提升为主节点,保证整体集群的可用性,整体的架构如下图所示:

cache6.jpg

Redis Sentinel 也是集群部署的,这样可以避免 Sentinel 节点挂掉造成无法自动故障恢复的问题,每一个 Sentinel 节点都是无状态的。在 Sentinel 中会配置 Master 的地址,Sentinel 会时刻监控 Master 的状态,当发现 Master 在配置的时间间隔内无响应,就认为 Master 已经挂了,Sentinel 会从从节点中选取一个提升为主节点,并且把所有其他的从节点作为新主的从节点。Sentinel 集群内部在仲裁的时候,会根据配置的值来决定当有几个 Sentinel 节点认为主挂掉可以做主从切换的操作,也就是集群内部需要对缓存节点的状态达成一致才行。

Redis Sentinel 不属于代理层模式,因为对于缓存的写入和读取请求不会经过 Sentinel 节点。Sentinel 节点在架构上和主从是平级的,是作为管理者存在的,所以可以认为是在服务端提供的一种高可用方案。

Your browser is out-of-date!

Update your browser to view this website correctly.&npsb;Update my browser now

×